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Cis P-tau is induced in clinical and preclinical brain
injury and contributes to post-injury sequelae
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Traumatic brain injury (TBI) is characterized by acute neurological dysfunction and asso-

ciated with the development of chronic traumatic encephalopathy (CTE) and Alzheimer’s

disease. We previously showed that cis phosphorylated tau (cis P-tau), but not the trans form,

contributes to tau pathology and functional impairment in an animal model of severe TBI.

Here we found that in human samples obtained post TBI due to a variety of causes, cis P-tau

is induced in cortical axons and cerebrospinal fluid and positively correlates with axonal injury

and clinical outcome. Using mouse models of severe or repetitive TBI, we showed that cis

P-tau elimination with a specific neutralizing antibody administered immediately or at delayed

time points after injury, attenuates the development of neuropathology and brain dysfunction

during acute and chronic phases including CTE-like pathology and dysfunction after repetitive

TBI. Thus, cis P-tau contributes to short-term and long-term sequelae after TBI, but is

effectively neutralized by cis antibody treatment.
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Traumatic brain injury (TBI) is the leading cause of death
and disability among people under the age of 45 years1.
Worldwide, 10 million deaths and/or hospitalizations

annually are directly attributable to TBI and an estimated 57
million people are currently living with the consequences of TBI2.
In the United States, 1.6−3.6 million athletes sustain TBI each
year3, ~20% of 2.3 million troops deployed to Iraq and Afgha-
nistan experienced a TBI4, 5 and visits for TBI to Emergency
Departments in the US have increased eightfold more than the
total increase between 2006 and 20106. Diverse mechanisms of
TBI, including repetitive mild TBI (rmTBI), as seen in collision
sports3, and single moderate/severe TBI (ssTBI), as seen in
military blasts4, 5 or motor vehicle accidents, cause acute and
potentially long-lasting neurological dysfunction. TBI is also a
major risk factor for neurodegenerative diseases, such as
chronic traumatic encephalopathy (CTE)7–10, Alzheimer’s disease
(AD)11–14, and Parkinson’s disease15. However, these neurode-
generative disorders occur many years or decades after TBI, and
the mechanisms leading from acute TBI to chronic neurode-
generation are virtually unknown7–10, 16. Moreover, the search for
targeted pharmacologic interventions has been nearly universally
unsuccessful in mitigating the short-term or long-term outcomes
of TBI17, 18. Establishing the causal link between TBI and neu-
rodegenerative diseases could lead to critically needed targeted
therapies.

Tau pathology is a common feature of several neurodegen-
erative disorders, together known as tauopathies19, 20. Neurofi-
brillary tangles composed of phosphorylated tau are the
neuropathological signature of CTE found at autopsy in the
brains of boxers, American football players, and blast-exposed
veterans7–10, 21, 22. Tau tangles are also a hallmark of AD19, 20,
and the tau isoform and phosphorylation profiles of tangles
purified from CTE brains and AD brains are indistinguishable23.
Tau in tauopathies is often hyperphosphorylated on Ser or Thr
residues preceding a Pro residue resulting in disruption in its
microtubule function and alterations in its protein stability,
eventually leading to tau aggregation and tangle formation19, 20.
In addition, other posttranslational modifications such as trun-
cation, sumoylation and acetylation have been shown to affect tau
function and contribute to the development of tau
pathology19, 20. Various aspects of tau pathology, including tau
hyperphosphorylation, oligomerization, aggregation, and tangle-
like formation have been observed in animal models of tauo-
pathies, without the development of mature tau tangles. Fur-
thermore, tau pathology spreads through the brain24, 25.
Moreover, although immunization with full-length tau protein
has been shown to induce histopathologic features of Alzheimer
disease and tauopathies26, active or passive immunization tar-
geting certain tau fragments or pathological tau epitopes has
shown some benefit against tauopathy without adverse effects,
with some in early clinical trials27, 28. Thus, tau may offer a
promising therapeutic target for tauopathies.

While tau tangle pathology has long been described in CTE
and AD, such pathology following a single TBI is less well-
described. Earlier case reports have described AD-like tangle
pathology after a single, severe TBI followed by onset of
dementia29, 30 and a more recent study has found tau tangles in
~30% of 39 human survivors 1 year or more from a single
moderate to severe TBI31. However, there is not obvious tau
pathology in 45 patients who died acutely (up to 1 month) fol-
lowing a single TBI32. The presence of tau pathology after TBI in
preclinical models has been inconclusive. For example, tau
phosphorylation and oligomers are detected acutely after open
head, severe TBI in some rat models33, 34. Furthermore, tau
phosphorylation and tangle-like pathologies have been observed
many months after closed head repetitive TBI in some

reports34–36, but not in others37, 38. Thus, the role of tau
pathology in linking TBI to neurodegeneration is unclear.

We have previously identified a proline isomerase, Pin1 that
inhibits the development of tau pathology and neurodegeneration
in AD by converting the phosphorylated Thr231-Pro motif in tau
(P-tau) from the pathogenic cis conformation to the physiologic
trans conformation39–47. We developed polyclonal and mono-
clonal antibodies able to specifically distinguish and eliminate
these two protein conformations and identified cis P-tau as a
precursor of tau pathology and an early driver of
neurodegeneration48–50. Within hours after closed head injury in
mouse models, or following neuron stress in vitro, neurons
produce cis P-tau prior to tau oligomerization and aggregation,
which causes and spreads axonal pathology by a pathogenic
process which we term cistauosis, including disruption of axonal
microtubules and transport system, eventually leading to neuro-
nal death48. Cistauosis is effectively blocked in vitro and in vivo
by cis P-tau monoclonal antibody (cis mAb)48. Specifically, cis
mAb prevents extracellular cis P-tau from spreading, and also
enters neurons via Fcγ receptors to target intracellular cis P-tau
for TRIM21-mediated proteasome degradation, rendering cis P-
tau resistant to degradation and dephosphorylation to be
degradable48–50. The importance of TRIM21 in degrading tau
immunocomplexes has been confirmed51. Treating severe TBI
mice with cis mAb not only eliminates early cis P-tau accumu-
lation after injury and blocks cistauosis, but also prevents the later
development of tau tangles and brain atrophy48. These results
reveal that cis P-tau is critical for the development of axon
pathologies, offering a potential link between TBI and neurode-
generation, and suggest cis P-tau antibody might be used to block
tau pathology and prevent neurodegeneration after TBI48–50. The
therapeutic potential of cis P-tau antibody is further supported by
the findings that tau knockout prevents axon pathology and
memory deficits after repetitive mild TBI in mice52 and that
immunotherapy can effectively remove toxic proteins in the
brain, even in patients with mild cognitive impairment27, 28, 53, 54.

It is still unknown whether cis P-tau is induced acutely after
TBI in humans, especially given a prior study that showed no tau
pathology was not found in the brains of 45 patients who died
within 2 months after TBI32. Moreover, since there are many
other short-term and long-term pathological and functional
outcomes of TBI7–10, it is not known whether treatment with cis
P-tau antibody would mitigate these outcomes. These questions
are important for elucidating the molecular mechanisms under-
lying TBI and its consequences, and for understanding the
potential impact of cis P-tau targeted therapy on TBI.

To demonstrate the importance of cis P-tau to acute and
chronic TBI in humans, we examined cis P-tau in brains and
cerebrospinal fluid acutely after severe TBI in humans and at
chronic time points after injury in CTE brains from athletes with
exposure to rmTBI. We found that severe TBI in humans due to
diverse mechanisms (including motor vehicle accidents, assaults
or falls) acutely and robustly induces toxic cis P-tau in cortical
axons and cerebrospinal fluid, correlating with traumatic axonal
injury and functional outcome 1 year after injury. In CTE brains
with more remote TBI exposure, cis P-tau is widespread in the
brain and correlates with various neurodegenerative pathologies.
These results suggest that cis P-tau might also be involved in the
development of other short-term and long-term outcomes of
severe and repetitive TBI. To test this hypothesis, we utilized
established mouse models of severe and repetitive mild TBI and
elimination of cis P-tau induction and spreading using a neu-
tralizing cis mAb to examine its impact on pathological and
functional outcomes after injury. Indeed, elimination of cis P-tau
effectively blocks the development and progression of not only
tau pathology, but also an array of TBI-related neuropathological

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01068-4

2 NATURE COMMUNICATIONS |8:  1000 |DOI: 10.1038/s41467-017-01068-4 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


and functional outcomes during acute and chronic phases.
Moreover, we have provided direct evidence that rmTBI in mice
is sufficient to induce a range of widespread neuropathological
features and functional deficits resembling those found in human
CTE. More importantly, these CTE-like neuropathology and
dysfunction after rmTBI are potently mitigated by eliminating cis
P-tau using cis mAb. Thus, cis P-tau is a causative agent for the
development and progression of a range of short-term and long-
term outcomes of ssTBI or rmTBI, but can be effectively blocked
in rodent models by cis mAb treatments. These results suggest
that cis mAb may be further developed for early diagnosis and
treatment of TBI and prevention of CTE and AD later in life in
humans.

Results
Axonal injury and cis P-tau induction in clinical severe TBI.
We first examined whether and where cis P-tau is induced acutely
after TBI in human brains by performing immunostaining on
cortical and hippocampal tissues of 14 patients 3−67 years of age
who died from a TBI-related death. These patients had docu-
mented survival time for 1 h to 1 month after injury and primary
injury mechanisms included motor vehicle accidents (6 cases),
assaults (4 cases), falls (3 cases), or unknown cause (1 case)
(Supplementary Table 1). Neither cis nor trans P-tau was detected
on controls (people who died without CNS causes or diseases) or
1 h after TBI (Fig. 1a), as shown previously in normal human and
mouse brains48. However, robust cis, but not trans, P-tau was
readily and diffusely detected in the cortex, but not in the hip-
pocampus, as early as 8 h after TBI in all 13 TBI patients
examined, with variable intensity (Fig. 1a, Supplementary Fig. 1).
Cis P-tau in the cortex was mainly localized to axons diffusely,
but not in dendrites (Fig. 1c, d). Notably, traumatic axonal injury,
one of the most common and important pathological features of
closed head injury55, was also obvious in the cortex, but not in the
hippocampus, as demonstrated by Gallyas silver-positive axonal
bulbs (Fig. 1b), as previously described56, 57. However, as docu-
mented by well-established antibodies, none of these acute TBI
samples had obvious tau oligomers (as detected by oligomeric tau
antibody T22), early tau tangles (AT8 antibody), late tau tangles
(AT100 antibody), amyloid beta peptide aggregation (Aβ anti-
body), or TDP-43 pathologies (TDP-43 antibody) in the cortex or
hippocampus (Fig. 1e, f, Supplementary Table 1), in contrast to
CTE and AD brains where cis P-tau partially co-localized with
T22 and AT100 (Fig. 1g, h). However, acute TBI, especially at
survival day 7, did induce a tendency toward increased staining
intensity of ionized calcium-binding adapter molecule 1 (Iba1)
positive microglia in the cortex, however the increase in intensity
was not significant compared to controls, in contrast to CTE
brains (Supplementary Fig. 2). Thus, severe TBI in humans
acutely and prominently induces cis P-tau, which is most notable
in the axons and is associated with axonal injury. There is no
evidence of tau oligomers or tangles, gliosis, Aβ or TDP-43-
related pathologies. In this series of TBI patients who survived up
to 1 month after injury, both cis P-tau and axonal injury are
limited to the cortex, but do not reach to the hippocampus. This
pattern has been shown previously after severe TBI in mouse
models48.

CSF cis P-tau correlates well with outcome in TBI patients. To
confirm this early cis P-tau induction after TBI in humans, we
obtained cerebrospinal fluid (CSF) samples collected from an
external ventricular drain (EVD) placed in patients with severe
TBI as part of their routine clinical care. CSF cis P-tau was
assayed using immunoprecipitation with cis mAb, followed by
immunoblotting with tau antibody E178, or using direct ELISA

with cis mAb. Both assays readily detected cis P-tau in CSF
samples obtained on different acute days after TBI, with generally
similar results (Fig. 2a, Supplementary Fig. 13). cis P-tau in
human TBI CSFs migrated as a single major band of 50 kDa on
SDS-gels, similar to those observed in TBI mouse brain samples48

(Figs. 4c, 5b, and 6b), although additional slower migrated bands
were also observed in post-mortem AD CSFs (Fig. 2a, Supple-
mentary Fig. 13). The presence of CSF cis P-tau in human
patients was further confirmed by a functional assay in vitro.
Since cis P-tau is able to enter neuroblastoma SY5Y cells and
induce cell death after being added to culture media48, we added
human TBI CSF or control CSF samples to culture media of
growing SY5Y cells for 3 days; we then assayed cell death using
the live/dead cell assay, as described48. TBI CSF samples but not
control CSF samples induced neuron death in a dose-dependent
manner (Fig. 2b, c). Neuron death was significantly blocked by
immunodepleting cis, but not trans P-tau using the respective
mAbs prior to being added to culture media (Fig. 2b, c), sup-
porting the specificity of cis P-tau-induced neuron death48.
Depletion of total tau using Tau5 mAb also prevented the ability
of human TBI CSFs from inducing neuron death (Fig. 2c), as
shown previously for TBI brain lysates to induce neuron death48.

Next, to examine the significance of cis P-tau in human TBI, we
used direct ELISA to measure CSF cis P-tau levels between days 4
and 6 after injury in 26 patients with severe TBI (GCS <8) from
two tertiary care centers who had undergone EVD placement as
part of their routine clinical care. We examined the correlation of
acute cis P-tau expression with the Glasgow Outcome Scale
(GOS) score in 20 patients with 1 year of follow-up (Fig. 2d, e,
Supplementary Table 2). We used an ordered logistic regression
model with 1 year GOS score as the outcome and CSF cis P-tau
level as the main predictor, controlling for age, gender, and initial
Glasgow Coma Scale (initial injury severity) score. In the
multivariable model, there was a significant, inverse relationship
between CSF cis P-tau levels and the GOS outcome (p= 0.005)
(Fig. 2d, e). Although further studies are needed to establish
utility of CSF cis P-tau as a biomarker in TBI, these results show
that severe TBI in humans acutely induces cis P-tau in the cortex
and CSF, correlating with traumatic axonal injury and clinical
outcome.

Cis P-tau found in deeper brain regions in CTE patients. Given
the correlation between cis P-tau and 1-year clinical outcome of
patients with TBI, we next asked if cis P-tau is associated with
chronic TBI pathologies. To address this question, we examined
the relationship between cis P-tau and other secondary neuro-
pathologies. We obtained the post-mortem brains of eight ath-
letes involved in collision sports who were <75 years of age and
met criteria for CTE, from two independent sources, and com-
pared them to age-matched controls (Supplementary Table 3). In
CTE brains, we found that cis P-tau was detected not only in the
cortex, but also in deeper regions, such as the thalamus (Fig. 3a,
b), consistent with our previous findings in mouse models
showing that cis P-tau spreads across different brain regions with
time after impact-induced or blast-induced TBI48. Moreover, cis
P-tau was correlated with the presence of a range of the neuro-
pathological features of CTE including axonal pathology (Gallyas
silver staining) (Fig. 3c, d; Supplementary Fig. 3a, b), tau oligo-
merization (T22) (Fig. 3e, f), early tangles (AT8) (Fig. 3g, h), and
late tangles (AT100) (Supplementary Fig. 3c, d). Furthermore,
we observed other secondary pathologies including glial
fibrillary acidic protein (GFAP)-positive astrocytes (Fig. 3i, j)
and Iba1-positive microglia (Fig. 3k, l) (two common indica-
tors of chronic neuroinflammation58), TDP-43 pathology (espe-
cially with increased mislocalization spreading from the
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nucleus to cytoplasm (Supplementary Fig. 3e−g) and demyeli-
nation as detected by the oligodendroglial cell (myelin producing)
marker CNPase (2′,3′-Cyclic-nucleotide 3′-phosphodiesterase)

(Supplementary Fig. 3h, i) both in the cortex and thalamus. APP
also accumulated in CTE patients (Supplementary Fig. 4a, b).
Although Aβ plaques (Aβ40 or Aβ42) were detected in some CTE
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Fig. 1 Severe TBI in humans due to motor vehicle accidents, assaults or falls induces prominent axonal injury and axonal cis P-tau induction in the cortex. a,
b Severe TBI in humans induces early cis P-tau induction and axonal injury in the cortex. Whereas neither cis nor trans P-tau nor axonal injury was detected
in normal brains or 1 h after TBI due to motor vehicle accident, robust cis P-tau and axonal injury, but not trans P-tau were detected in the cortex, but not in
the hippocampus, as early as 8 h after motor vehicle accident, as detected by double IF, followed by isotype-specific secondary antibodies a or Gallyas
silver staining b. Microscope images correspond to the cortex and hippocampus of control and TBI patients. TBI cases due to falls and assaults are shown in
Supplementary Fig. 1. The number of TBI patients is 14. White arrows point to cis P-tau localization to axons; Red arrows point to axonal bulb. White scale
bars, 20 µm and black scale bars, 40 µm. c, d cis P-tau (red) is diffusely co-localized (white arrows) with the axon marker tau (green) c, but not the dendrite
marker MAP2 (green) d in human TBI cortex, with little cis in control, as detected by double IF, followed by confocal microscopy. e−h Cis P-tau is robustly
induced after TBI in the absence of tau oligomers or tangles. Cortical sections of severe human TBI due to motor vehicle accidents were doubly
immunostained with cis mAb (red) and T22 (tau oligomers) e, g or AT100 (tau tangles) f, h, followed by confocal microscopy. Normal controls as well as
CTE and AD brains were used as negative and positive controls, respectively. Of note, cis mAb partially co-localized with T22 or AT100 in CTE or AD
brains, but not in acute TBI brains
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patients (Supplementary Fig. 4c−f), plaque volume between cases
and controls did not differ (Fig. 3c, Supplementary Fig. 4c−f).

Cis mAb improves acute phase outcomes after ssTBI. The
association of early cis P-tau with clinical outcomes after severe
TBI, and the correlation of cis P-tau with other neurodegenerative
consequences suggest that cis P-tau may be crucial for the
development and progression of not only tau pathology, but also
for other short-term and long-term outcomes of ssTBI and
rmTBI. To address this question, we subjected young adult
C57BL6 mice to a weight drop closed head injury, delivering a 54-
gram weight from a height of 60 inches to the cranium of an
unrestrained mouse, allowing rapid rotational acceleration of the
head to produce single severe/moderate impact closed head TBI
(ssTBI). This resulted in nearly 100% convulsive activity and
obvious cis P-tau induction, without a skull fracture or
contusion38, 48, 59, 60. After injury, we examined the relationships
between cis P-tau and various pathological and functional chan-
ges at 48 h, 2 weeks and 6 months after injury. As shown pre-
viously, we found that cis, but not trans, P-tau was induced in the
cortical axons at 48 h after ssTBI (Supplementary Fig. 5a, b).
Importantly, traumatic axonal injury and pathology was obvious
at this time, as detected by Gallyas silver-positive axonal bulbs
(Supplementary Fig. 5c), and supported by axonal accumulation
of APP (Supplementary Fig. 5d). Notably, changes observed soon
after injury were limited to the cortex close to the impact site, but
not found in deeper brain regions, such as the hippocampus and
thalamus (Supplementary Fig. 5). We also investigated whether
other tau and/or neurodegenerative pathologies might appear
acutely after ssTBI using well-characterized antibodies. We found
no clear evidence of tau oligomers, early or late tangles

(Supplementary Fig. 5e−g) or other neurodegenerative changes
including GFAP-positive astrocyte or Iba1-positive microglia
(Supplementary Fig. 5h, i), Aβ (Supplementary Fig. 5j) or TDP-43
pathology (Supplementary Fig. 5k), neuronal loss (as detected by
the neuronal specific nuclear protein-NeuN) (Supplementary
Fig. 5l) or demyelination (by the oligodendrocyte marker
CNPase) (data not shown) at 48 h after injury. At later time
points after injury, cis P-tau (Fig. 4c, d, Supplementary Fig. 14)
and diffuse axonal injury (DAI) (Fig. 4e) persisted, along with the
appearance of astrogliosis (Supplementary Fig. 6e) in the cortex at
2 weeks, spreading deeper to other brain regions such as the
hippocampus at 6 months (Fig. 5, Supplementary Figs 6, 15).
Other tau pathologies, including tau oligomers, early and late
tangles, and neurodegenerative pathologies appeared in deeper
brain regions such as hippocampus at 6 months (Fig. 5, Supple-
mentary Fig. 6), but not at 2 weeks after ssTBI (Fig. 4, Supple-
mentary Fig. 6). These results suggest that in a severe preclinical
impact and acceleration TBI model, closed head injury induces
prominent cis P-tau along with DAI without any other commonly
known tau pathology or other secondary pathologies in the brain
surface cortex acutely after injury. With time, cis P-tau spreads to
deeper brain regions along with the appearance of other tau
pathologies and other secondary and neurodegenerative
pathologies.

To test whether cis P-tau is causative rather than just associated
with functional and neurodegenerative features of TBI, we treated
ssTBI mice with cis P-tau mAb. We have previously shown that
peripherally administrated cis P-tau mAb is able to enter the
brain and can effectively eliminate cis P-tau by targeting
intracellular cis P-tau for proteasome-mediated degradation as
well as preventing extracellular cis P-tau from spreading to other
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neurons after TBI in mice48. This is consistent with many
previous results showing that immunotherapy can effectively
remove toxic proteins in the brain27, 28, 53, 54. Therefore, we
evaluated the effects of cis P-tau mAb treatment on other
neurodegenerative pathologies and functional outcome. Although
there is no common scoring system to assess functional outcomes
in preclinical TBI models to correlate with the widely used clinical
outcome measure, GOS, we chose functional outcomes based on a

robust literature in preclinical TBI models60–62. After treating
ssTBI mice with cis mAb or IgG isotype control for 2 weeks
with 3 or 4 intraperitoneal (i.p.) injections (200 µg each) over
10 days (Fig. 4a, b), cis mAb eliminated toxic cis P-tau induction
(Fig. 4c, d, Supplementary Fig. 14), silver-positive inclusion
(Fig. 4e), APP accumulation (Supplementary Fig. 6b) and
astrogliosis (Supplementary Fig. 6e) in the cortex without
changing physiological trans P-tau (Supplementary Fig. 6a).
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Treatment with cis P-tau mAb also prevented sensorimotor
coordination deficits, as detected by Ledge assay63 (Fig. 4g) and
string suspension64 (Fig. 4h). At 2 weeks after injury, we did not
detect significant deficits in novel location recognition
memory65, 66 (Supplementary Fig. 7k) and spontaneous urinary
pattern67 (Fig. 4i, j) in the two TBI groups when compared with
the sham control. In addition, we did not detect tau oligomeriza-
tion (Fig. 4f), early and late tangle formation (Supplementary
Fig. 6c, d), Iba1-positive microglia (Supplementary Fig. 6f), TDP-
43 pathology (Supplementary Fig. 6g), Aβ pathology (Supple-
mentary Fig. 7a, b), neuronal loss (Supplementary Fig. 7c) or
demyelination (Supplementary Fig. 7d, e) in the two TBI groups
compared with sham mice at 2 weeks after severe injury.

Cis mAb improves chronic phase outcomes after ssTBI. In
contrast to 2 weeks after ssTBI, at 6 months the development and

spreading of other tau pathology (tau oligomers, early and late
tangles) and neurodegenerative pathologies, together with the
emergence of more behavioral deficits, were observed (Fig. 5 vs.
Fig. 4). Notably, intermittent cis mAb treatment for 4 months
(Fig. 5a) not only eliminated and blocked spreading of cis P-tau
(Fig. 5b, c, Supplementary Fig. 15), axonal pathology (Fig. 5d) and
astrogliosis (Supplementary Fig. 6l) into the hippocampus with-
out affecting physiologic trans P-tau (Supplementary Fig. 6h), but
also prevented tau oligomerization (Fig. 5e), tangle-like formation
(Supplementary Fig. 6j, k), and APP accumulation (Supplemen-
tary Fig. 6i). We did not detect reactive microgliosis (Supple-
mentary Fig. 6m), TDP-43 pathology (Supplementary Fig. 6n),
Aβ pathology (Supplementary Fig. 7f, g), neuronal loss (Supple-
mentary Fig. 7h) or demyelination (Supplementary Fig. 7i, j) in all
three groups at 6 months after ssTBI. Functionally, ssTBI did not
lead to deficits in the novel location recognition (Fig. 5h) or
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baseline exploratory/locomotion activity assayed by dim-light
open field test (Supplementary Fig. 8a−c). However, although cis
mAb treatment did not improve the performance on the Morris
water maze (Supplementary Fig. 8f), as shown previously48, it
restored performance to sham level for other functional outcomes
including sensorimotor and coordination imbalance as detected
by the Ledge assay (Fig. 5f, Supplementary Movie 1) and string
suspension (Fig. 5g, Supplementary Movie 2), and urinary
incontinence, as detected by spontaneous urinary pattern
(Fig. 5i). Sensorimotor/coordination defects68–70 and urinary
incontinence71, 72 are major clinical problems in severe TBI
patients.

Delayed cis mAb administration improves outcomes after
ssTBI. As a proof of concept to evaluate the efficacy of a shorter
course of cis mAb treatment with delayed administration, we
investigated two shorter treatment regimens consisting of four
doses (4 i.p. injections at days 1, 3, 7, and 10 starting immediately
after ssTBI injury) and 3 doses (3 i.p. injections at days 1, 3, and
5, starting up to 8 h after ssTBI) (Fig. 6a). The shorter regimens
were effective in eliminating cis P-tau induction (Fig. 6b, Sup-
plementary Fig. 16) and preventing sensorimotor/coordination
imbalance at 2 weeks after ssTBI (Fig. 6c, d), even when cis mAb
treatment was delayed 4 or 8 h after injury (Fig. 6a). Again, there
was no obvious defect between sham and the two treated TBI

groups in spontaneous urinary pattern (Fig. 6e). These data
suggest that a short-term, intensive loading dose of cis mAb
treatment, started at delayed time points after injury, might be
sufficient to eliminate cis P-tau induction in rodent models, but
further evaluation of the treatment window and duration of
therapy is warranted.

Cis mAb prevents CTE pathology and dysfunction after
rmTBI. We next asked whether cis mAb is able to prevent the
development of CTE-like pathology using an established weight-
drop model of rmTBI38, 48, 60. Mice underwent seven injuries in
9 days (54-gram weight, 28″ drop height) and were treated with
cis mAb or control IgG isotype for 4 month, followed by
2 months of washout without treatment, as described in Methods
section. Functional outcomes were assessed at 6 months after
injury after which mice were killed and examined for histo-
pathological outcomes (Fig. 7a, b). Compared to ssTBI mice at
6 months, rmTBI mice demonstrated stronger evidence of a range
of secondary pathologies, including axonal pathology, cis P-tau
and tau tangles, Aβ loading, gliosis, neuroinflammation, TDP-43
pathology and demyelination, as well as wider and deeper
spreading of pathologies to various brain regions including white
matter and cerebellum (Fig. 7, Supplementary Fig. 9), similar to
human CTE (Fig. 3, Supplementary Fig. 3). Treatment with Cis
mAb eliminated the induction of cis P-tau (Fig. 7c, d,
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Supplementary Fig. 17) and axonal pathology (Fig. 7e), and
prevented total tau accumulation (Fig. 7c), tau oligomerization
(Fig. 7f), and tangle-like formation (Supplementary Fig. 9b, c,
Supplementary Fig. 10c, d) as well as neuron loss (Fig. 7o) across
different brain regions (Fig. 7b). Furthermore, cis mAb also

blocked other secondary pathologies after TBI including APP
accumulation (Fig. 7g), Iba1-positive microglia and GFAP-
positive astrocytes (Fig. 7h, i), TDP-43 pathology (Fig. 7j) with
increased cytoplasmic mislocalization of TDP-43 (Fig. 7k, l), and
demyelination (Fig. 7m, n, Supplementary Fig. 9f−g) throughout
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the brain including the cortex, hippocampus, thalamus, amyg-
dala, and even cerebellum. Anti-paired helical filament (PHF)-tau
immunostaining and Thioflavin-S staining also showed robust
tangle-like pathology in the frontal cortex 6 months after rmTBI
(Supplementary Fig. 10c, d), although not so obvious after ssTBI
(Supplementary Fig. 10a, b). These tangle-like pathologies were
effectively mitigated by elimination and neutralization of cis P-tau
by treatment with cis mAb (Supplementary Fig. 10). Notably, we
also observed tangle-like pathology and increased astrocytosis in
the periventricular and perivascular elements in rmTBI mice
(Supplementary Figs. 11, 12) resembling those found similar in
humans with CTE, which were also mitigated by neutralization of
cis P-tau by treatment with cis mAb (Supplementary Figs. 11, 12).
rmTBI led to a statistical trend in increased Aβ deposition and
treatment with cis mAb also prevented the increase (Supple-
mentary Fig. 9d, e). Moreover, although rmTBI did not lead to
deficits in exploratory or locomotion activity (Supplementary
Fig. 8d, e), cismAb prevented the development of a range of other
clinically relevant functional outcomes including sensorimotor
coordination imbalance (Fig. 8a−c), urinary incontinence
(Fig. 8d, e), and memory deficit as detected by novel object
location recognition test (Fig. 8f, g). These results indicate that cis
mAb treatment eliminates cis P-tau induction and spread, and
also prevents the development of a range of CTE-like pathological
features and functional outcomes after rmTBI.

Efficacy of cis mAb in improving outcomes across studies. To
test the efficacy of cismAb to improve functional outcomes across
the injury (ssTBI and rmTBI) and treatment (immediate or
delayed) regimens, we pooled data and performed two statistical
analyses. First, we normalized the data of each experiment by
sham for comparing experiments, and then combined all of the
data and calculated the mean and SD, followed by calculating
combined fold change, cis mAb effect size, Cohen’s d or z-score
effect size, and combined p-value. Cohen d, defined as standar-
dized mean difference, is commonly used as an effect size for
continuous data following a normal distribution to indicate the
standardized difference between two means73. Cohen d is scaled
and classified as small (d= 0.2), medium (d= 0.5), large (d= 0.8),
very large (d= 1.2), or huge (d= 2.0). For three tests (Ledge assay,
string suspension and voiding pattern tests), which do not have
continuous data following a normal distribution, we instead cal-
culated the z-score effect size from the rank sum test and divided
by the square of the number of observations, to get a statistic that
may be a nonparametric alternative to Cohen’s d73. This data
analysis showed that cis mAb prevented the development of an
array of histopathological and functional outcomes after ssTBI or
rmTBI (Table 1). To further support these findings, we employed
factor analysis74 for the functional and pathological outcomes

across all ssTBI and rmTBI studies, under the assumption that
treatment addresses a latent behavior construct factor, i.e., a
common mechanism, across studies (Supplementary Table 4), as
described in Methods section. Factor analysis is a statistical
method intended to explain the relationships among several dif-
ficult to interpret, correlated variables in terms of a few con-
ceptually meaningful, relatively independent factors and is
frequently employed in clinical neuropsychiatric studies74. Using
conventional factor loading cutoff of 0.3 to determine variable
retention74, we performed factor analysis for histopathological
outcomes (7 histopathological outcomes in cortex and hippo-
campus), functional outcomes (three behavior assays), and
combined histopathological and functional outcomes. In each of
these factor analyses, the scree plot demonstrated one factor to be
retained for linear regression leaving one latent construct each for
histopathological outcomes, functional outcomes, and combined
histopathological and functional outcomes. We next performed a
distinct linear regression for each latent construct outcome with
indicator variables for injury and treatment as the predictors. On
linear regression, we found that IgG treated mice were different
than sham mice or cis mAb treated mice, but there was no dif-
ference between sham mice and cis mAb treated mice in terms of
the latent histopathology, latent behavior or combination con-
structs (Supplementary Table 4). Both data analyses demonstrate
the potent efficacy of cis mAb in preventing the development and
progression of histopathological and functional outcomes across
ssTBI and rmTBI studies.

Discussion
Here we demonstrate the significance of cis P-tau across a spec-
trum of TBI mechanisms and pathologic outcomes at acute and
chronic time points. Having previously identified cis P-tau as an
early driver of tau pathology and neurodegeneration after severe
closed head TBI in preclinical models and offering a potential link
between TBI and neurodegeneration48–50, we now demonstrate
the relevance of cis P-tau to human TBI, including severe single
TBI and CTE. In addition, we also define the role of cis P-tau in
the development and treatment of other short-term and long-
term consequences of TBI, including a wide array of CTE-like
neurodegenerative features, such as axonal pathology, tau, APP,
and TDP-43 pathologies, neuroinflammation, neuronal loss,
white matter degeneration and cerebellar pathology, as well as
clinically relevant functional deficits, including sensorimotor
coordination imbalance, urinary incontinence, and cognitive
impairment. Despite a growing clinical literature demonstrating
that TBI is an important environmental risk factor for neurode-
generative disease such as CTE7–10 and AD11–14, the causal link
and underlying mechanisms between TBI and these neurode-
generative outcomes remains unclear8–10 and the role of tau

Fig. 7 Eliminating cis P-tau in rmTBI mice with cismAb prevents the development of a range of pathological features resembling those found in human CTE.
Mice were subjected to seven mild TBI events over 9 days and were treated with cis mAb or IgG isotype control over 4 months, followed by 2 months of
washout, before assaying pathologies in different brain regions a, b. Blue arrows, rmTBI; black arrows, antibody injection; green line, functional, or
pathological assays. Cis mAb treatment of rmTBI mice eliminated induction and spreading of cis P-tau and total tau c, d, prevented the development and
spreading of axonal pathology e, tau oligomerization f, APP accumulation g, GFAP-positive astrocyte h, Iba-positive microglia i, TDP-43 pathology with
increased cytoplasmic mislocalization of TDP-43 j−l. Line graphs showing the relative IF intensity of TDP-43 across a single cell k, l (Blue line, DAPI; red
line, TDP-43). Cis mAb treatment also prevented the demyelination as detected by CNPase IF m, n, and neuronal loss o in different brain regions. Shorter
exposure of ECL for total tau immunoblots in c was used due to a huge increase in total tau in rmTBI mice, as expected because cis P-tau is resistant to
protein degradation. Microscope images corresponded to the medial prefrontal cortex of sham (left), rmTBI + IgG (middle), and rmTBI + cis mAb (right)
with quantification data in different brain regions being present at right panels. Inset images are the high magnification image of selected area denoted by
the white. Scale bar, 40 μm. Red arrows point to axonal bulb in Gallyas silver staining. mPFC, medial prefrontal cortex; HC, hippocampus; Thal, thalamus;
BLA, basolateral amygdala; CC, corpus callosum; IC, internal capsule; Cb, cerebellum. ND, not detectable; NS, not significant. Brains from 4−5 WT male
mice were studied in immunohistochemistry per group. The data are presented as means± SEM. The p-values were calculated using unpaired two-tailed
parametric Student’s t-test. *p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001
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pathology, a common feature of these neurodegenerative out-
comes, is not known7–10, 19.

To detect cis P-tau acutely after TBI and determine its sig-
nificance in acute and chronic TBI in humans, we examined cis P-
tau in autopsy specimens from patients with fatal TBI and CTE,
as well as in CSF samples from patients with severe TBI. We
found that diverse mechanisms of severe TBI due to motor
vehicle accidents, assaults or falls result in acute and robust
induction of cis P-tau in axons, along with axonal injury mainly
in the cortex, but without other neurodegenerative changes in tau,
Aβ or TDP-43-related pathologies and Iba1-positive reactive
microglia within the first month after injury. We found that cis P-
tau in the CSF of TBI patients displays dose-dependent neuro-
toxicity in vitro, and is highly correlated with the clinical outcome
of patients with TBI at 1 year after injury, further supporting its
pathological significance. However, in human subjects with
exposure to repetitive head trauma who are diagnosed with CTE
at autopsy, robust cis P-tau is not only detected in the brain
surface cortex, but also in deeper brain regions such as the tha-
lamus, and is closely associated with a range of neuropathological
features of CTE including axonal pathology, tau, APP, and TDP-
43 pathologies, neuroinflammation, neuronal loss, white matter
degeneration, and cerebellar pathology. These results not only
support our previous findings that cis P-tau is crucial for the
development and progression of tau pathology48, but also suggest
that cis P-tau may be involved in the development and progres-
sion of other short-term and long-term outcomes of ssTBI and
rmTBI. Although the correlation of cis P-tau with the 1 year

clinical outcome and pathological changes in human TBI patients
is intriguing, large scale longitudinal studies are needed to vali-
date whether cis P-tau is a predictive biomarker of injury and
recovery. Moreover, there may be additional potential con-
founding or effect-modifiers, making it difficult to establish a
causative role for cis P-tau in the development of acute and
chronic pathological changes after TBI.

To test whether cis P-tau is an early, key mediator of diverse
neurodegenerative changes and functional impairment after TBI,
we utilized established closed head injury models of ssTBI and
rmTBI to evaluate the effects of cis mAb therapy on pathological
and functional outcomes after injury. Here we demonstrate that
ssTBI acutely induces prominent cis P-tau before tau oligomer-
ization or tangle formation, or other secondary pathologies in the
injured cortex. With time, cis P-tau spreads to deeper brain
regions along with the appearance of other tau pathology, other
secondary and neurodegenerative pathologies as well as func-
tional deficits. Importantly, treating ssTBI mice with cis mAb
effectively eliminates cis P-tau induction, axonal pathology and
astrogliosis, and also prevents sensorimotor coordination deficits
at 2 weeks after injury. At 6 months after injury, cis mAb not only
eliminates and blocks spreading of cis P-tau, axonal pathology
and astrogliosis into the hippocampus, but also prevents other
mechanisms of secondary and neurodegenerative pathologies.
These include tau oligomerization, tangle formation, gliosis and
APP accumulation, as well as prevention of sensorimotor coor-
dination deficits and urinary incontinence.
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Fig. 8 Eliminating cis P-tau in rmTBI mice with cis mAb prevents the development of clinically relevant functional deficits. Cis mAb treatment of rmTBI mice
prevents sensorimotor coordination deficits, as detected by Ledge assay a, string suspension b and accelerated rotarod c, and urinary incontinence, as
assayed by spontaneous urinary pattern analysis d, e and memory deficit, as assayed by novel object location recognition test at 6 months after injury f, g.
5−6 mice underwent urinary pattern test and 9−10 WT mice underwent other behavioral studies per group. The data are presented as means± SEM. The
p-values were calculated using unpaired two-tailed parametric Student’s t-test. *p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001
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We have provided direct evidence that rmTBI in mice is suf-
ficient to induce a wide range of neuropathological features
resembling those in human CTE, including axonal pathology, tau,
APP, and TDP-43 pathologies, neuroinflammation, neuronal loss,
white matter degeneration and cerebellar pathology, as well as
clinically relevant functional deficits, including sensorimotor
coordination imbalance, urinary incontinence, and cognitive

deficit. More importantly, these neuropathological features and
functional deficits are almost fully mitigated by elimination and
neutralization of cis P-tau by treatment with cismAb after rmTBI.
These results have not only confirmed our early findings that cis
P-tau is a precursor of tau pathology and an early driver of
neurodegeneration48–50, but also suggest that early induction of
cis P-tau is critical for the development of a range of other
pathological and functional outcome after severe or repetitive TBI
(Fig. 9). Interestingly, most of these CTE-like pathologies are also
found in human AD brains except at different brain regions and
Aβ deposition19, 20. Previous studies have shown an increase in
Aβ deposition in ~50% of patients with CTE75 and after acute
TBI in humans76 though few murine TBI models have demon-
strated Aβ deposition after TBI, aside from transgenic mice77. We
did not observe an increase in Aβ deposition, although Aβ
deposition was found in some human CTE brains and some
mouse TBI brains, especially 6 months after rmTBI in our studies.
Given that Aβ deposition is age-dependent and found normally in
many aged brains, the relative paucity of Aβ plaques in our
clinical and preclinical studies could reflect the relatively young
age of our subjects, <65 years old for the clinical studies and
<9 months for the mouse models.

Though Aβ deposition was not a pathologic feature of our TBI
models, axonal injury was consistent in both ssTBI and rmTBI
models, consistent with human TBI55, and treatment with cis
mAb prevented the progression from traumatic axonal injury to
the chronic axonal pathology. Traumatic axonal injury has
emerged as one of the most common and important pathological
features of closed head injury55. It is recognized to cause dis-
ruption in axonal transport, followed by secondary disconnection
and finally Wallerian degeneration55, 78, 79. Although this process
was thought to be limited to the acute and sub-acute periods, it
has recently been implicated in the development of Alzheimer-
like pathologies both in the acute and chronic phrases after
TBI55, 79, 80. However, molecular mechanisms that mediate
traumatic axonal injury to axonal pathology remain elusive55. We
have previously shown that ssTBI or rmTBI dose-dependently
induces cis P-tau notably in axons within hours after injury,
which disrupts the microtubule network and mitochondrial
transport in the axon48. Importantly, cis mAb treatment not only

Table 1 Combined therapeutic outcomes of cis mAb treatments in ssTBI mice or rmTBI mice regimens

TBI-related
outcomes

Experimental tests Treatment regimen
(as used in figures)

No of total
mice used

No of mice
each group

Pathological and functional outcomes (fold± SD) Cohen’s d* or z-score
effect size**

p-value

Combined
IgG/Sham

Combined Cis mAb/
Sham

Cis mAb combined
effect size

Selected pathological outcomes
Cis P-tau Cis P-tau (cortex) 5a; 4a; 7a 39 3−4 100.7± 0.28 11.3± 0.25 8.91± 0.36 5.99 ≤0.0001

Cis P-tau (hippo.) 5a; 4a; 7a 39 3−4 67.8± 0.88 5.87± 0.19 11.5± 0.91 1.98 ≤0.0001
Trans P-tau Trans P-Tau (cortex) 5a; 4a; 7a 39 3−4 1.00± 0.22 1.00± 0.21 1.00± 0.23 0.02 >0.05

Trans P-Tau (hippo.) 5a; 4a; 7a 39 3−4 1.04± 0.24 1.03± 0.26 1.01± 0.21 0.03 >0.05
Axonal injury Gallyas silver (cortex) 5a; 4a; 7a 39 3−4 20.8± 6.51 1.66± 0.58 12.5± 6.51 2.26 ≤0.0001

Gallyas silver (hippo.) 5a; 4a; 7a 39 3−4 15.2± 4.65 1.46± 0.56 10.5± 4.67 2.21 ≤0.0001
Other tau pathology T22 (cortex) 5a; 4a; 7a 39 3−4 81.8± 0.81 8.98± 0.22 9.12± 0.83 2.09 ≤0.0001

T22 (hippocampus) 5a; 4a; 7a 39 3−4 64.4± 0.85 5.85± 0.21 11.0± 0.87 1.93 ≤0.001
AT8 (cortex) 5a; 4a; 7a 39 3−4 69.0± 0.84 12.3± 0.27 5.63± 0.89 1.75 ≤0.0001
AT8 (hippocampus) 5a; 4a; 7a 39 3−4 63.8± 0.81 7.16± 0.22 8.91± 0.87 1.85 ≤0.0002
AT100 (cortex) 5a; 4a; 7a 39 3−4 59.8± 0.84 7.39± 0.22 8.08± 0.86 1.71 ≤0.0001
AT100 (hippocampus) 5a; 4a; 7a 39 3−4 60.2± 0.80 6.56± 0.21 9.18± 0.81 1.86 ≤0.0003

APP accumulation APP (cortex) 5a; 4a; 7a 39 3−4 3.82± 0.43 1.39± 0.19 2.74± 0.46 2.09 ≤0.0001
APP (hippocampus) 5a; 4a; 7a 39 3−4 2.59± 0.46 1.12± 0.12 2.30± 0.45 1.47 ≤0.006

Neuron inflammation GFAP (cortex) 5a; 4a; 7a 39 3−4 1.62± 0.13 1.06± 0.03 1.52± 0.14 1.68 ≤0.0005
GFAP (hippocampus) 5a; 4a; 7a 39 3−4 1.42± 0.11 1.03± 0.02 1.37± 0.11 1.51 ≤0.001

Selected functional outcomes
Sensorimotor
coordination defects

Ledge test 4a, b; 5a; 6a, b; 7a 99 5−9 2.92± 0.38 1.06± 0.19 2.74± 0.49 0.64** ≤0.0001

String suspension 4a, b; 5a; 6a, b; 7a 99 5−9 3.32± 0.66 1.00± 0.24 3.34± 0.81 0.56** ≤0.0001
Accelerating rotarod 7a 27 9 1.22± 0.05 0.90± 0.03 1.35± 0.04 1.22 ≤0.03

Cognitive loss Novel location recog. 7a 27 9 1.27± 0.05 0.91± 0.03 1.38± 0.05 1.21 ≤0.03
Urinary control Voiding pattern 5a; 7a 42 5-9 1.45± 0.09 0.93± 0.06 1.56± 0.10 0.55** ≤0.002

*Cohen d is classified as small (d= 0.2), medium (d= 0.5), large (d = 0.8), very large (d= 1.2), or huge (d= 2.0). **z-score is a nonparametric alternative to Cohen’s d
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Fig. 9 A model for the roles of cis P-tau and its mAb in the development and
treatment of ssTBI and rmTBI. ssTBI or rmTBI causes persistent and robust
cis P-tau induction before other tau pathology likely due to axon injury. Cis
P-tau mainly localizes to axons and causes and spreads axonal pathology,
contributing to the development and progression of a range of
neuropathological and functional outcomes during acute and chronic
phases, including those pathological features resembling human CTE.
Treatment of ssTBI or rmTBI mice with cis mAb not only eliminates cis P-
tau and blocks its spreading, but also prevents the development and
progression of a range of neuropathological and functional outcomes after
injury
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eliminates axonal cis P-tau induction and restores axonal
pathologies, including defective microtubules, organelle transport
and long-term potentiation, but also prevents the development of
a range of short-term and long-term pathological and functional
outcomes after ssTBI or rmTBI, as shown here or previously48.
Moreover, cis P-tau is robustly induced, notably in axons, toge-
ther with traumatic axonal injury hours after closed head injury
in humans and mouse models without other secondary pathol-
ogies. Others have shown that tau knockout inhibits axonal
pathology after rmTBI52. Taken together, these results not only
further support a major role of traumatic axonal injury in TBI
pathologies, but also suggest that cis P-tau might mediate trau-
matic axonal injury to axonal pathology, thereby contributing to
the development of many other neuropathological and functional
outcomes after TBI (Fig. 9).

Taken together, our data suggest that cis p-tau is a possible
diagnostic and therapeutic target for immunotherapy. Prior stu-
dies have demonstrated that immunotherapy can effectively
remove toxic proteins in the brain27, 28, 53, 54, with a recent
investigation showing the efficacy of peripheral administration of
the monoclonal antibody aducanumab in entering into the brain
and reducing beta amyloid plaques in clinical trials54. Tauopathy,
which has previously been implicated in the chronic pathology of
TBI and other neurodegenerative diseases, may also be a target
for immunotherapy27, 28, though tau pathology was not pre-
viously identified at early time points after TBI. Here, we have
shown that cis p-tau appears early after TBI and that CSF cis P-
tau levels are tightly correlated with clinical outcome after injury.
These results are consistent with the previous findings that tau
phosphorylated on Thr231 in the CSF is an AD biomarker,
correlating with memory loss and predicting AD progression
from mild cognitive impairment81. Moreover, we have demon-
strated that treating ssTBI or rmTBI mice with cis mAb is highly
effective in preventing short-term and long-term outcomes of TBI
in a range of clinically relevant histopathological and functional
outcomes. There results offer not only a novel disease mechanism
for TBI outcomes but also potential novel targeted therapy for
mitigating the short-term or long-term consequences of ssTBI
and rmTBI.

Methods
Human brain and CSF specimens. Discarded fixed human brain tissues from
different brain regions of individuals with acute TBI (Supplementary Table 1) were
provided by Dr Colin Smith at the Department of Academic Neuropathology,
University of Edinburgh, Little France, UK32. Discarded CSF specimens from acute
TBI patients (Supplementary Table 2) were obtained from the tissue bank at
Boston Children’s Hospital by Rebekah Mannix, who collected human samples
originally from Dr. William Gormley at the Department of Neurosurgery, Brigham
and Women’s Hospital, Harvard Medical School, Boston, MA, and Dr David O.
Okonkwo at the Department of Neurosurgery, University of Pittsburgh Medical
Center, Pittsburgh, PA82. Discarded fixed human brain tissues from different brain
regions of individuals with neuropathologically verified CTE (Supplementary
Table 3) were provided by Dr Julian Bailes at the Department of Neurosurgery,
NorthShore University Health System at University of Chicago Pritzker School of
Medicine83, and also by Dr Ann Mckee at the VA-BU-SLI Brain Bank of the
Boston University Alzheimer’s Disease Center CTE Program as described
previously7, 48. Informed consent was obtained from all subjects by respective
institutes. Institutional review board approval for tissue donation and our studies
on discarded human samples was obtained through the Beth Israel Deaconess
Medical Center, the University of Edinburgh, Brigham, and Women’s Hospital, the
University of Pittsburgh and Boston Children’s Hospital.

Immunoblotting analysis and immunodepletion experiments. Immunoblotting
analysis and immunodepletion were carried out as described48, 49. Briefly, brain
tissues or culture cells were lysed in RIPA buffer (50 mM Tris-HCl, pH 7.4,
150 mM NaCl, 2 mM EDTA, 1% NP 40, 0.1% SDS, 0.5% Na-deoxycholate, 50 mM
NaF) containing proteinase inhibitors and then mixed with SDS sample buffer and
loaded onto a gel after boiling. The proteins were resolved by polyacrylamide gel
electrophoresis and transferred to PVDF membrane. After blocking with 5% milk
in TBST (10 mM Tris-HCl pH 7.6, 150 mM NaCl, 0.1% Tween 20) for 1 h, the
membrane was incubated with primary antibodies (cis and trans mAbs)48, Tau5

(Biosource Camarillo, CA), tubulin (Sigma, St. Louis, MO), and actin antibodies
(Sigma, St Louis, MO) in 5% milk in TBST overnight at 4 °C. Then, the membranes
were incubated with HRP-conjugated secondary antibodies in 5% milk in TBST.
The signals were detected using chemiluminescence reagent (Perkin Elmer, San
Jose, CA). The membranes were washed four times with TBST after each step. To
deplete cis or trans p-tau from CSFs, samples were mixed with the cis or trans mAb
antibody at 425 µg/ml in a buffer containing proteinase inhibitors for 3 h at 4 °C
and then mixed with protein A/G sepharose for 1 h at 4 °C. The supernatants were
collected and added to cell culture application. Immunoblotting results were
quantified using Quantity One from BioRad.

Immunostaining analysis. Immunostaining analysis was carried out as
described48, 49. The primary antibodies used were cis mAb (clone #113) and trans
mAb (clone #25)48, tau tangle-related mAbs AT180, AT8, AT100 (all from
Innogenetics, Alpharetta, GA), oligomeric tau T22 polyclonal antibodies (EMD
Millipore, Billerica, MA), anti-tau rabbit mAb (E178, Abcam), anti-PHF-1
(ab109390, Abcam), Von Willerbrand factor-vWF (A0082, DAKO), anti-
neurofilament mouse mAb (SMI-312, IgG1, Abcam) for labeling axons, anti-MAP2
mAb (SMI-52, IgG1, Abcam) for labeling dendrites, CNPase monoclonal (11-5B)
antibody (Abcam) for labeling myelin, TDP-43 polyclonal antibody (proteintech),
Iba1 polyclonal antibody (Wako) for microglia, GFAP polyclonal antibody (Bio-
Genex) for astrocytes, APP A4 monoclonal (66-81) antibody (Millipore), anti-Beta-
Amyloid (1−42) polyclonal Antibody (Millipore), anti-Beta-Amyloid (1−40)
polyclonal Antibody (Sigma-Aldrich) and anti-NeuN AF488-conjugated mono-
clonal antibody (Millipore) for labeling neurons. Immunofluorescence staining of
mouse and human brains was done essentially as described41, 42, 49. After treatment
with 0.3 % hydrogen peroxide, slides were briefly boiled in 10 mM sodium citrate,
pH 6.0, for antigen enhancement. The sections were incubated with primary
antibodies overnight at 4 °C. Then, biotin-conjugated secondary antibodies (Jack-
son ImmunoResearch), streptavidin-conjugated HRP (Invitrogen) were used to
enhance the signals. For double immunofluorescence staining, the sections were
incubated with Alexa Fluor 488 or 568 conjugated isotype-specific secondary
antibodies (Jackson ImmunoResearch, West Grove, PA) for 1 h at room tem-
perature. Manufacturer-supplied blocking buffer (Invitrogen) was used for each
reaction. The sections were washed four times with TBS after each step. Labeled
sections were visualized with a Zeiss confocal microscope. The gain of confocal
laser was set at the level where there are no fluorescence signals including auto-
fluorescence in sections without primary antibody but with secondary antibody.
Immunostaining images and their co-localization were quantified using Volocity
6.3 from Perkin Elmer and Fiji/ImageJ Coloc 2, respectively, as described48, 49.

Direct ELISA assay. Cis P-tau levels in CSFs were assayed using direct ELISA
assay. Human CSF samples were first coated onto ELISA plates. After blocking
with buffer containing 1% gelatin in Tris-buffered saline and 0.05% Tween 20, cis
P-tau was detected with the primary antibody cis P-tau mAb at 1:1000 dilution,
followed by incubation with biotin-conjugated anti-mouse IgG2b secondary anti-
body in 0.25–0.5% gelatin in Tris-buffered saline and 0.05% Tween 20 for 1 h and
then by streptavidin protein that is covalently conjugated to poly-horseradish
peroxidase (HRP) enzyme. The ELISA plates were extensively washed six times
with the same buffer after each step. The signals were detected by incubating with
TMB substrate solution and measured by Wallac 1420 software at 450 nm, as
described48, 49.

Gallyas silver staining. Sections (10 μm thick) of paraformaldehyde-fixed and
paraffin-embedded tissues were deparaffinized and then received Gallyas silver
stain (reagents from FD NeuroTechnologies), followed by wash in tab water for 5-
min and dehydration through a graded series of EtOH (70%, 90%, 100%), for 5-
min each, and then clear slides in two changes of xylene solutions. Sections were
then covered with mounting media and cover slipped. The Optical Density was
measured using with Fiji/ImageJ Coloc 2.

Thioflavin-S staining. After treatment with 0.3% hydrogen peroxide for 30-min,
slides were incubated in 1% thioflavin-S (Sigma-Aldrich, St. Louis, MO, USA) for
15-min at room temperature followed by dehydration through an ethanol series
(70%, 90%, and 100%) for 5-min each and two 5-min washes in dH2O. Sections
were then covered with mounting media and cover slipped.

Luxol-fast blue staining. After hydration with 95% alcohol for 5-min, slides were
incubated in Luxol-fast blue solution (FD NeuroTechnologies) for overnight at 60 °
C followed by washed lithium carbonate solution for 5-min at room temperature
and two 10-min washes in 70% ethanol. Sections were then rinsed with dH2O and
covered with mounting media and cover slipped. The Optical Density was mea-
sured using with Fiji/ImageJ Coloc 2.

Cell culture. Neuronal cell lines including SH-SY5Y cells were cultured in Dul-
becco’s modified Eagle’s medium (DMEM) containing 10% fetal calf serum. The
media were supplemented with 100 Units/ml penicillin/steptomycin. Cell viabilities
were examined using Live and Dead cell assay kit (Abcam). After staining cells with
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the Live and Dead Dye diluted to 5X concentration in PBS, cells were incubated for
10-min at room temperature in the dark. Immunostaining images were then
quantified using Fiji/ImageJ Coloc 2.

Traumatic brain injury. Male C57BL/6 mice (2−3 months old) obtained from the
Jackson Laboratories (Bar Harbor, ME) were randomized to undergo injury or
sham-injury. The mice were anesthetized for 45 s using 4% isoflurane in a 70:30
mixture of air:oxygen. Anesthetized mice were placed on a delicate task wiper
(Kimwipe, Kimberly-Clark, Irving, TX) and positioned such that the head was
placed directly under a hollow guide tube. Mouse’s tail was grasped. A 54-gram
metal bolt was used to deliver an impact to the dorsal aspect of the skull, resulting
in a rotational acceleration of the head through the Kimwipe. Mice underwent
single severe injury (ssTBI, 60-inch height) or repetitive mild injuries (rmTBI,
seven injuries in 9 days)38, 48, 59, 84. Sham-injured mice underwent anesthesia but
not concussive injury. All mice were recovered in room air. Anesthesia exposure
for each mouse was strictly controlled to 45 s. Briefly, anesthetized young adult
wild-type C57BL/6 male mice were exposed to a severe or mild hit or sham hit,
removed from the apparatus, monitored until recovery of gross locomotor func-
tion, and then transferred to their home cage. Maximum burst pressure compatible
with 100% survival and no gross motor abnormalities were ascertained empirically.
All these and following animal experiments were approved by the Boston Chil-
dren’s Hospital, Beth Israel Deaconess Medical Center and/or Boston University
and IACUC and complied with the NIH Guide for the Care and Use of Laboratory
Animals.

Antibody treatment of mice. C57BL/6 male mice (2−3 months old) undergoing
TBI were randomized to treatment with cis p-tau monoclonal mouse antibody
(clone #113) or mouse IgG2b in a double-blind manner, as described48 with the
following modifications. For ssTBI, mice received 3 or 4 doses of cis antibody or
IgG2b intraperitoneal treatment (200 µg) after injury over 10 days, as described in
the text, followed by analysis at 2 weeks after injury or by further treatment 200 µg
i.p. weekly for another 1.5 month and biweekly for another 2 months (with total
4 months of treatment) before analyses at 6 months, as described41, 42, 48, 49. For
rmTBI, mice received intraperitoneal treatments (200 µg) on days 1, 7, 14, and 21,
followed by twice a month for 3 months (with total 4 months of treatment) before
analyses at 6 months, as described41, 42, 48, 49. For all behavioral tests, experimenters
were blinded to injury and treatment status, using color-coding stored in a
password-protected computer.

Spontaneous voiding assay. Group housed animals (4–6 per cage) were placed in
a clean, empty cage lined with precut 3MM acid-hardened filter paper (Waltham,
MA) with one animal per cage. Voiding assays were conducted over 4 h per day for
three consecutive days during which time mice had access to food but not water, as
previously described67. Filter papers were imaged using UV light and analyzed
using Image J Software using the threshold technique in double-blind manner.
Image J particle analysis was performed on spots greater than 6 mm2 (corre-
sponding to 0.6 μl urine), reducing non-specific marks potentially deposited by
paws and tails that pass through urine spots.

Ledge assay. In the ledge test, mice were placed on the elevated cage’s ledge at a
height of 35 cm and 0.8 cm wide, and monitored their movement. Each mouse was
tested three times (each test takes 20 s) and scored from 0 to 3 depending on the
severity of deficits in a double-blind manner. Scoring is as follows: if the mouse
walked along the ledge, without foot faults (i.e., loosing footing) and back into the
cage delicately, score of 0; if the mouse demonstrated any foot fault while walking
on the ledge, score of 1; if the mouse did not effectively walk on or dismounted the
ledge immediately, score of 2; if the mouse fell off the ledge or avoided walking,
score of 3.

String suspension assay. The mouse was permitted to grasp a string only by its
forepaws suspended 35 cm above the surface and were then released. Each mouse
was tested three times (each test takes 20 s) and scored from 0 to 3 depending on
the severity of deficits in double-blind manner. If the mouse was unable to remain
on string, score was 3; if it hung by both forepaws and attempted to climb onto the
string, score was 2; if both forepaws and one or both hindpaws were around string,
score was 1; if four paws and tail were around string, with lateral movement; score
was 0.

Accelerating rotarod test. The mice were placed in the rotating cylinder 4 times
per day for two consecutive days totally. Each trial last a maximum of 10 min,
during which time the rotating rod accelerated from 4 to 40 r.p.m. over first 5 min
of the trial and then remained at the maximum speed for the remaining 5 min.
Animal were rested at least 10 min between trials to avoid fatigue and exhaustion.

Dim-light open field test. Mice were placed in the center of a brightly lit (30−50
lux) chamber of the open field apparatus (40 cm diameter). Movements of the
animals were tracked by an automatic monitoring system (Noldus Ethovision XT)

for 20 min. Horizontal motor (distance traveled) and central activity (distance
traveled in center/total distance traveled) were evaluated.

Morris water maze. A Morris water maze (MWM) paradigm was used to evaluate
spatial learning and memory. The apparatus consisted of a white pool (83 cm
diameter, 60 cm deep) with water filled to 29 cm depth, at ~24 °C. Intra-maze and
extra-maze cues were included. The target (a round, clear, plastic platform 10 cm in
diameter) was placed 1 cm below the surface of the water. During hidden and
visible platform trials, mice were randomized to one of four starting quadrants.
Mice were placed in the tank facing the wall and allocated 80 s to find the platform,
mount the platform, and remain on it for 5 s. Mice were then dried under a heat
lamp before their next run. The time until the mouse mounted the platform (escape
latency) was recorded. Mice that did not mount the platform in the allocated 80 s
were guided to the platform by the experimenter and allowed 10 s to become
acquainted with its location. A maximum of two trials per mouse were carried out
per day, each trial consisting of four runs, with a 45-minute break between trials
(acquisition). For visible platform trials (vision), a red reflector was used to mark
the top of the target platform. For probe trials, mice were placed in the tank with
the platform removed and given 60 s to explore the tank. Noldus Ethovision
9 software tracked swim speed, total distance moved, and time spent in the target
quadrant where the platform was previously located.

Novel location recognition test. The Novel object recognition test consisted of an
open field-box (44 × 44 cm). The habituation period was 5 min daily of free
exploration in the arena containing two different objects (15 mm diameter) over
3 days. On test day, the animals were allowed to explore three identical objects
(with same color Lego sets) placed into the area in fixed location for 6 min and the
time spent inspecting the individual objects was recorded (Noldus Ethovision XT).
Without any time-interval the animals were replaced into the box where one object
was placed into a new location the mice were allowed to explore them for an
additional 3 min. The floor was covered with sawdust (1 cm deep, used and
saturated with the odor of the animals) during habituation and test trials. The
discrimination ratio for the novel location of the object in was analyzed as pre-
viously described65, 66.

Data acquisition and statistical analysis. We estimated the sample size con-
sidering the variation and mean of the samples. All surviving animals or samples
were included in the analyses except a few mice died immediately after brain injury.
Animals were randomly assigned groups for in vivo studies and for mAb treatment
experiments, group allocation and outcome assessment were also done in a double-
blinded manner. For all behavioral and histopathological tests, experimenters were
blinded to injury and treatment status, using color-coding stored in a password-
protected computer. Data acquisition and analysis obtained in an unbiased fashion.
All data are presented as the means ± s.d. or s.e.m, followed by determining sig-
nificant differences using the two-tailed Student’s t-test for quantitative variables or
ANOVA test for continuous or three or more independent variables or one-way
ANOVA with Bonferroni posthoc test, and significant p-values < 0.05 are shown.
In addition, to evaluate for a global effect across behavior tests and TBI treatment
groups, we subjected behavioral performance measures to a factor analysis74.
Factor analysis is a statistical method intended to explain the relationships among
several difficult to interpret, correlated variables in terms of a few conceptually
meaningful, relatively independent factors and is frequently employed in clinical
neuropsychiatric studies. The factors are not measured directly but are inferred
from the variables that represent the factor74. We determined the number of factors
to be retained based on their eigenvalues and by the change in slope of the scree
plot. We used a conventional factor loading cutoff of 0.3 to determine variable
retention. Variables that did not load on any of the rotated factors were removed
and the factor analysis was repeated to produce the final factor solution, which
included many histopathological outcomes and/or three functional outcomes
(Supplementary Table 2). We then calculated factor scores for each retained factor.
Finally, we developed a regression model with the factor score as the dependent
variable the treatment group as the predictor, to obtain an overall p-value for the
effect of treatment on the behavioral performance measure.

Data availability. All data generated or analyzed during this study are included in
this published article (and its Supplementary Information) or from the corre-
sponding author upon reasonable request.
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