

Participation in Professional American-Style Football and Suicide Mortality: 1979–2019

Rachel Grashow,^{1,2,*†} Niki Konstantinides,^{1,2,†} Benjamin C. Anderson,³ Michael Leung,^{1,2} Eric N. Fung,² Aaron L. Baggish,^{1,4,5} Daniel H. Daneshvar,⁶ Wayne Grove,⁷ Ross Zafonte,^{1,6,8} and Marc G. Weisskopf^{1,2}

Abstract

Despite strong associations established between head injury and mental health, studies of professional athletes exposed to head injury show reduced risk of suicide compared with general populations. We compared the risk of suicide among National Football League (NFL) players to Major League Baseball (MLB) and National Basketball Association (NBA) players. Death data from 1979 to 2019 were obtained from the National Death Index for 20,765 NFL, 9,684 MLB, and 3,564 NBA players whose careers began after 1919. We calculated hazard ratios (HRs) and 95% confidence intervals (CIs) for suicide for NFL players compared with a combined MLB + NBA reference group, adjusted for age at career end, race, and career body mass index. We additionally stratified follow-up time at 2011, when attention on the long-term effects of head injury and chronic traumatic encephalopathy increased. Between 1979 and 2019, 101 suicides occurred among 34,013 participants with mean \pm standard deviation (SD) age at career end of 28.3 ± 4.2 , and among whom 13,677 (40.2%) were Black. Overall, the NFL suicide rate was similar to the MLB + NBA (HR = 1.20, 95% CI = 0.71–2.01, $p = 0.50$). When stratified at 2011, no difference was found through 2010 (HR = 0.91, 95% CI = 0.49–1.71, $p = 0.78$), while the suicide rate post-2010 was higher among NFL players (HR = 2.64, 95% CI = 1.04–6.84, $p = 0.04$). We have identified a twofold higher incidence of recent suicide within the at-risk group of former NFL players. These findings underscore the need for more intensive post-career guidance pathways and enhanced, proactive screening measures.

Keywords: chronic traumatic encephalopathy; concussion; football; neurological disorders; suicide; sports; traumatic brain injury

Introduction

Death by suicide is ranked as one of the leading causes of death among Americans under the age of 55, and as the 11th leading cause among all age groups.^{1,2} Known predictors of suicide include depression, suicidal ideation, hopelessness, and sleep disturbances,^{3–6} with recent studies identifying head injury as an additional risk factor for death by suicide.^{7–9} Former professional American-style football (ASF) players are exposed to repetitive head

injury (RHI), which has also been strongly tied to depression.^{10–13} However, previous mortality studies conducted among ASF players have found lower rates of suicide when compared with general populations.^{14,15} This may be due to substantive differences that exist between elite athletes and the general public making the latter a problematic reference group.^{16–18} A more appropriate comparison would be professional athletes from sports that experience fewer head injuries. To date, such a study has

¹Football Players Health Study at Harvard University, Harvard Medical School, Boston, Massachusetts, USA.

²Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA.

³Department of Economics, Colgate University, Hamilton, New York, USA.

⁴Cardiovascular Performance Program, Massachusetts General Hospital, Boston, Massachusetts, USA.

⁵Department of Cardiology, Lausanne University Hospital (CHUV) and Institute for Sport Science, University of Lausanne (ISSUL), Lausanne, Switzerland.

⁶Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, Massachusetts, USA.

⁷Economics Program, Madden College of Business and Economics, Le Moyne College, Syracuse, New York, USA.

⁸Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, Missouri, USA.

[†]Denotes equal contribution.

*Address correspondence to: Rachel Grashow, PhD, MS, Department of Environmental Health, Harvard T. H. Chan School of Public Health, 655 Huntington Avenue, Building 1, Room 1402, Boston, MA 02115, USA E-mail: rgrashow@hsphs.harvard.edu

yet to be conducted on a sufficiently large dataset. Accordingly, debate remains about whether participation in professional contact sports places athletes at relatively greater risk of suicide.^{19,20}

Associations between RHI and chronic traumatic encephalopathy (CTE; a neuropathological finding determined at autopsy²¹) have raised concern among ASF players. In 2010, two case studies described autopsy identification of CTE among four former National Football League (NFL) players who died by suicide, suggesting suicidality as a consequence of RHI and a clinical feature of CTE.^{22,23} In 2011, public sources reported that a former NFL player died by suicide with the intent to donate his brain to research.²⁴ Since that time, other high-profile players have left similar autopsy instructions after deaths by suicide. While the relationship between autopsy findings and antemortem phenotyping is still debated,²⁵ associations between head injury, suicidality, and CTE continue to be raised in both public and medical domains.²⁶ Two separate studies of former professional ASF players found that more than one-third of former ASF players reported CTE concerns,^{27,28} with one finding additional associations with frequent thoughts of suicide.²⁷

To determine whether participation in professional ASF is associated with increased suicide, we compared suicide rates among former NFL players to those from Major League Baseball (MLB) and the National Basketball Association (NBA) in a large dataset of complete historical data. We hypothesized that NFL players would have an elevated rate of suicide across all years studied compared with MLB or NBA players, two sports in which the risk of head injury is much lower.²⁹ We additionally evaluated the suicide rate before and after 2011, a period marked by: (1) increased scientific publications about CTE; (2) changes in how suicide was presented in public media; (3) increased discussion of links between head injury, football, and CTE;^{26,30} (4) death by suicide among a number of high profile NFL players; and (5) increased awareness of efforts to minimize the association between ASF exposure and CTE.³¹

Methods

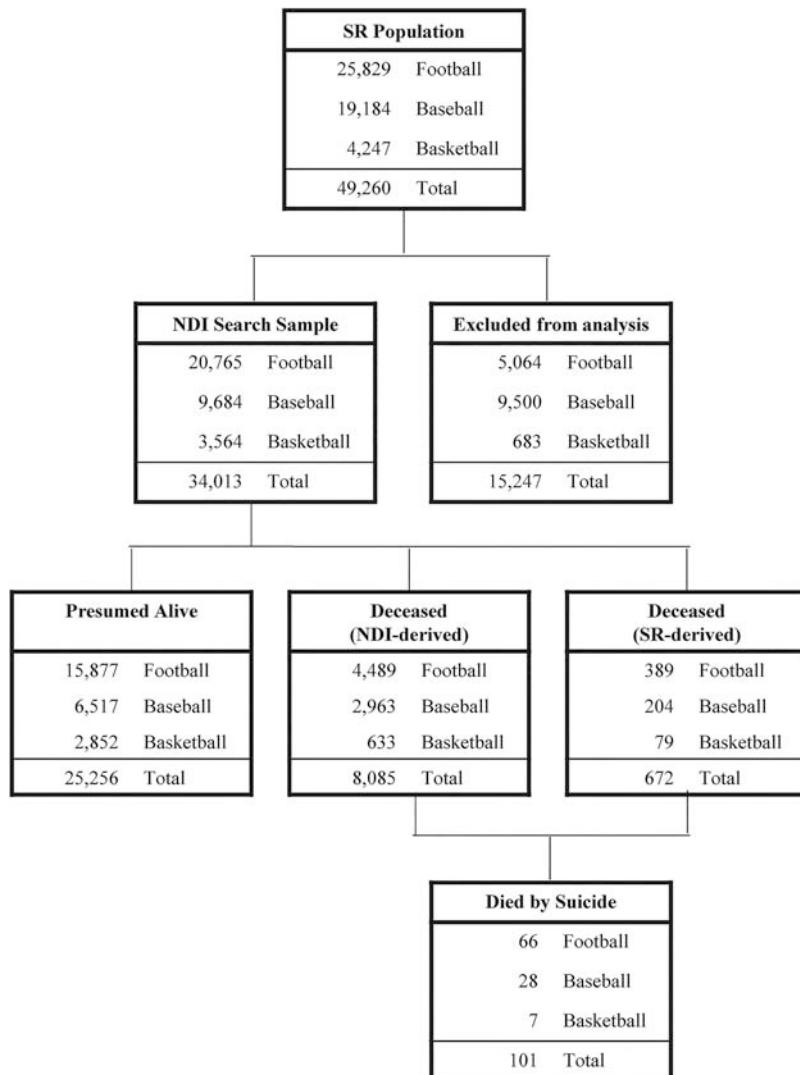
Study population

Sports Reference (SR), LLC³² maintains a database of living and deceased professional athletes from the National Football League (NFL; or the American Football League prior to 1966), MLB, and the NBA ($n = 49,260$). SR provides biographical data (name, date and place of birth, date of death if relevant, colleges attended, playing height and weight), overall sports data (e.g., first and last career year), and game-level sports-specific data (e.g., teams, player performance). All MLB, NBA, and NFL athletes who played at least one professional game are included. As a result, practice players were not included in the dataset.

SR determined career height and weight using team media guides, League publications, and/or team rosters. Race and ethnicity data were licensed from Hidden Game Sports, LLC.³³

The U.S. National Death Index (NDI) electronic data starts on January 1, 1979. We excluded individuals born before 1899 ($N = 5,715$) or after 1995 ($N = 120$), or those with an SR-recorded death prior to 1979 ($N = 2,382$). We excluded active players ($N = 3,384$), those lacking birth information ($N = 526$), and those who would have been over 108 years of age at the time of censoring ($N = 20$). Due to the small number of Latino, Asian, Pacific Islander, and Alaskan Native or Native American players in the NFL³⁴ and evidence of race and ethnicity differences in suicide rates,³⁵ we restricted our analyses to White and Black former players only and excluded other race and ethnicities ($N = 2,490$). Since the NFL was created in 1920, we included only players whose careers ended on or after that year through 2017 for MLB (last available) and 2018 for NFL and NBA ($N = 444$). We excluded deaths reported by SR that occurred outside of the United States ($N = 166$). The final analytic cohort included 34,013 players (Fig. 1). This study was approved by the Harvard T. H. Chan School of Public Health institutional review board.

NDI matching algorithm


All cause-of-death data for our analyses came from the NDI. We followed the NDI algorithm for identifying correct matches between submitted demographic data and NDI data.³⁶ Based on seven SR-derived characteristics provided (first name, middle initial, surname, and day, month, year, and state of birth), 6,828 exact matches were found. An additional 1,102 matches met NDI-specified match quality criterion, and 155 more matched on name and birth data within a ± 5 -year window.

We matched 374 additional deceased players by further considering SR day, month, year, and state of death data when available. Of these, one matched on 10 of 11 characteristics, 230 matched on 9, 102 on 8, 24 on 7, and 17 on 6. Those with fewer than six matching criteria were considered alive.

Outcome ascertainment and historical stratification

Deaths from suicide were the outcome of interest and identified using the International Classification of Diseases (ICD), Ninth Revision (ICD-9) and ICD, Tenth Revision (ICD-10), codes E950–E959, and X60–X84 and Y870, respectively, as underlying or contributing cause of death.

In addition to full follow-up analyses, we also stratified follow-up time as through 2010 versus in 2011 and after, based on a number of changing factors. These include indications that scientific and public awareness of concussion in sport and impact-related brain disease (e.g.,

FIG. 1. Flowchart of matching and excluded National Football League (NFL), Major League Baseball (MLB), and National Basketball Association (NBA) players and suicide occurrence for the National Death Index (NDI) dataset using Sports Reference (SR) data. Players were excluded if they were more than 108 at the time of censoring ($N = 20$) or born before 1899 ($N = 5,835$), finished playing before 1920 ($N = 444$), were currently listed as active players ($N = 3,384$), were missing biographical data needed for NDI matching ($N = 526$), died before 1979 ($N = 2,382$) or outside the United States ($N = 166$), lacked birth information, or were of Latino, Asian, Pacific Islander, and Alaskan Native or Native American descent ($N = 2,490$). COD, cause of death.

CTE) had notably shifted. First, PubMed by Year³⁷ (a tool that calculates the annual proportion of peer-reviewed PubMed studies containing specified terms) showed increased use of “CTE” around 2010 (Supplementary Fig. S1). Second, a study of internet searches for CTE, concussion, and TBI appeared to increase around 2010, especially for concussion.²⁶ In addition, a number of publicized suicides among former players occurred in or after 2011, some of whom left specific instructions for autopsy.²⁴ We also conducted additional sensitivity analyses that split the data at follow-up through 2009 or 2011.

Statistical analysis. We estimated hazard ratios (HR) and 95% confidence intervals (CIs) using multivariable Cox proportional hazards models with years since career end as the time scale to determine relative rates of suicide. In sensitivity analyses, we used age as the time metamer for Cox models. In analyses that included all years of electronic NDI data, players contributed follow-up time starting on the date of their career end or, for those whose careers ended before 1979, on January 1, 1979, the onset of electronic NDI data. Players contributed follow-up time until censoring (death by suicide or any competing

cause), or end of follow-up (December 31, 2019), whichever came first. The only difference for pre-2011 analyses was that end of follow-up was considered December 31, 2010. For analyses of 2011 and later, follow-up time started on January 1, 2011 or date of their career end if after that (those who died prior to 2011 contributed no follow-up) and ended on December 31, 2019. To check on possible change in the reference group post-2010, we also estimated HR among MLB + NBA players in post-2010 follow-up compared with earlier.

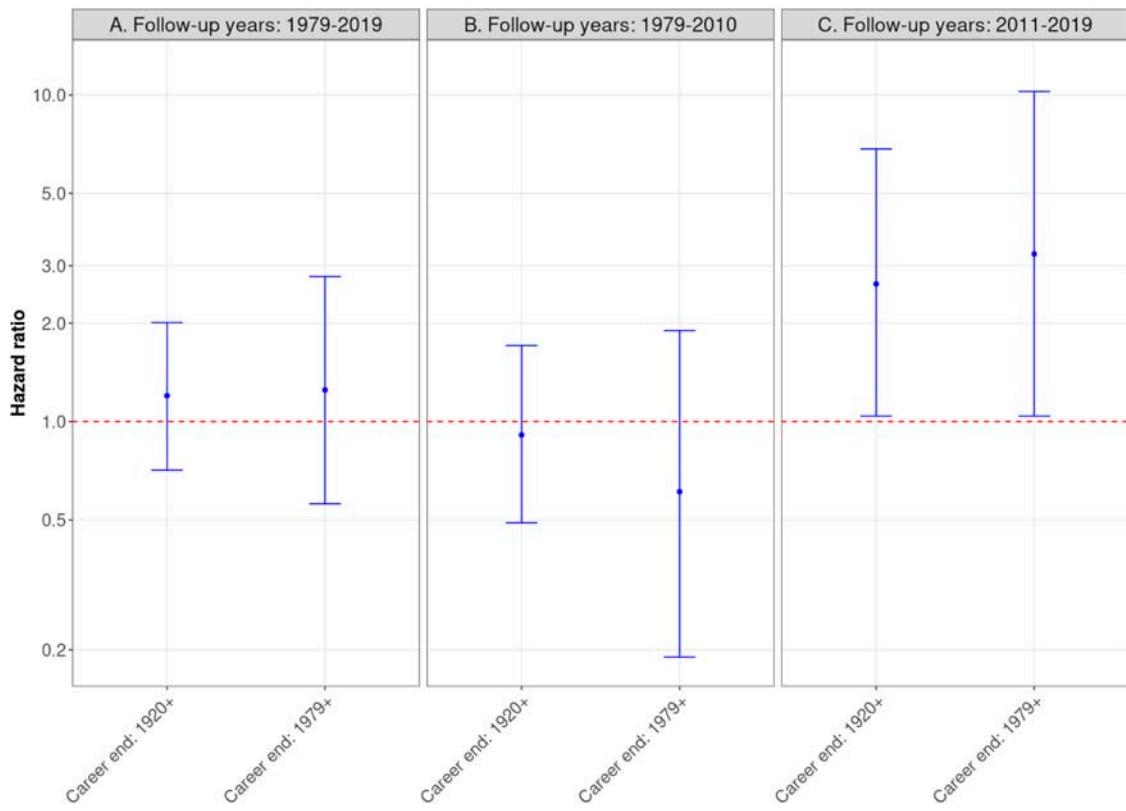
If a participant's death occurred in the same year as their final career year, the end of career was assigned as the day before date of death (MLB/NBA/NFL $n = 8/10/10$). NDI state-specific privacy restrictions prevented release of cause of death for 33 decedents (18 matched by the NDI-only algorithm and 15 with additional SR data). These decedents, as well as 298 players identified as deceased by SR, but not matched with NDI, were censored the day before their death. To avoid the possibility of SR death identification being biased by sport and cause of death, we conducted sensitivity analyses only considering deaths identified without the additional SR death information. To avoid differences in playing years contributing to relative rates, we conducted sensitivity analyses that excluded players whose careers started before 1954, the earliest career start among those who died by suicide after 2010. Main analyses combined MLB and NBA as reference, due to a similarly reduced risk of RHI. Secondary analyses treated MLB as a reference in comparison to NFL and NBA. Models were adjusted for age at career end, race (Black/White), and body mass index (BMI; kg/m^2) during professional career. We imputed mean BMI by sport, position, and debut year for players missing BMI (MLB/NBA/NFL $n = 0/2/55$).

Analyzing players whose careers ended before 1979 conditions on them surviving to 1979, which could bias overall results if associations are different in earlier follow-up years. Thus, we first examined players for whom we had complete post-career follow-up (those whose careers

ended in 1979 or later). We examined HR for increasing 5-year follow-up increments to determine how missing follow-up would impact HR when we included all players.

All hypothesis tests were two-sided and assessed at $p < 0.05$ level of significance. Analyses were conducted using R Statistical Software,³⁸ version 4.4.1. The R package "Survival" was used to calculate parameter estimates and test the proportional hazards assumption using Schoenfeld tests. All sport-related terms satisfied the proportional hazards assumption.

Results


The mean \pm SD ages at career end for MLB, NBA, and NFL players were 29.8 ± 4.7 , 28.3 ± 4.4 and 27.6 ± 3.7 , respectively. A majority of NFL (50.4%) and NBA (62.8%) players were Black, compared with 11.1% from the MLB (Table 1). Across all sports, 101 suicides occurred between 1979 and 2019. Among these, 66 NFL players died by suicide over 469,892 total years of follow-up, 28 MLB players died by suicide over 221,761 years of follow-up, and 7 NBA players died by suicide over 83,095 years of follow-up (Table 1).

When only considering players with complete post-career follow-up (i.e., those whose careers ended in 1979 or later), the HR across all follow-up time was 1.25 (95% CI: 0.56–2.78; Fig. 2A). Among this group, HRs for increasing 5-year follow-up periods were nonsignificantly lower in earlier postcareer periods, but otherwise generally similar by post-career follow-up years (Supplementary Table S1). Thus, missing earlier post-career years of players whose careers ended earlier should not miss important risk periods. When we considered all players with careers that ended between 1920 and 2019 and who died after 1979, NFL players showed a slightly elevated, but not significant HR for suicide compared with MLB + NBA similar to the analysis among only those with complete follow-up (HR = 1.20, 95% CI: 0.71–2.01; Fig. 2A). In analyses that stratified follow-up time at 2010, there was no difference in suicide rate by

Table 1. Demographic Distributions and Suicide Occurrence Among Professional Athletes from Major League Baseball (MLB; Career End from 1920 to 2017), National Basketball Association (NBA; Career End from 1920 to 2018), and National Football League (NFL; Career End from 1920 to 2018)

	Total (N = 34,013)	MLB (N = 9,684)	NBA (N = 3,564)	NFL (N = 20,765)
Suicide occurrence, N (%)	101 (0.3%)	28 (0.3%)	7 (0.2%)	66 (0.3%)
Age at suicide, mean (SD)	53.4 (18.2)	59.8 (17.1)	42.2 (16.6)	51.9 (18.1)
Person-years of follow-up, N	774,748	221,761	83,095	469,892
Race, N (%)				
Black	13,677 (40.2%)	1,076 (11.1%)	2,237 (62.8%)	10,364 (50.4%)
White	20,336 (59.8%)	8,608 (88.9%)	1,327 (37.2%)	10,401 (50.1%)
Age at career end, mean (SD)	28.3 (4.2)	29.8 (4.7)	28.3 (4.4)	27.6 (3.7)
Professional BMI, mean (SD)	27.6 (3.9)	25.1 (1.9)	24.0 (1.7)	29.4 (3.8)
Missing, N	57	0	2	55
Years of follow-up per player, mean (SD)	30.1 (17.9)	32.7 (18.1)	27.9 (17.2)	29.2 (17.8)

BMI, body mass index; SD, standard deviation.

FIG. 2. Hazard ratios^a (HRs) and 95% confidence intervals (CIs) for suicide among all National Football League (NFL) athletes compared with all Major League Baseball (MLB) combined with National Basketball Association (NBA) players as reference. Analyses use calendar year as the time metamer, and were conducted across **(A)** the entire follow-up period from 1920 to 2019; **(B)** during follow-up restricted to 1979–2010; and **(C)** during follow-up restricted to 2011–2019. All analyses were conducted in participants whose career ended after 1920, and restricted to those with career end after 1979. Note: ^aModels were adjusted for age, race, and career BMI.

sport among players who contributed follow-up time up to and including 2010 (NFL HR = 0.91; 95% CI = 0.49–1.71, $p = 0.78$; Fig. 2B). However, there was a significantly elevated HR after 2010 (NFL HR = 2.64; 95% CI = 1.04–6.84; $p = 0.04$; Fig. 2C). The HR after 2010 was greater when restricted to those with complete follow-up (career end in 1979 or later), among whom the HR for suicide for NFL players compared with MLB + NBA players was 3.26 (95% CI: 1.04, 10.25; $p = 0.04$; Fig. 2C), in contrast to the period prior to 2011 (NFL HR = 0.61; 95% CI = 0.19–1.90; $p = 0.39$; Fig. 2B). Stratifying the follow-up time after 2009 slightly weakened the HR, while results stratifying after 2011 were similar (Supplementary Table S2). Analyses that used only MLB players as the reference group were similar in all cases (Supplementary Tables S3 and S4). Results were essentially the same in analyses that did not use deaths identified only by SR (Supplementary Table S5). Analyses that used age as the time metamer yielded similar

results (Supplementary Table S6). The HR for post-2011 compared with prior to 2011 among MLB + NBA was 0.93 (95% CI: 0.43–2.00; $p = 0.85$).

Discussion

Previous studies have shown reduced suicide mortality in elite athletes when compared with general populations,^{15,39–41} but many differences between elite athletes and general populations (e.g., history of exercise and training, access to health care, salary discrepancies) complicate efforts to identify specific aspects of sport that affect suicide risk. To address these differences, our study compared NFL players with MLB and NBA players over follow-up from 1979 to 2019 and found no significant difference in the rate of suicide overall. However, we identified a large difference when we compared suicide rates up through 2010 to years after. Specifically, we found equivalent suicide risk by sport through 2010, but a more than twofold significant increase in rate of deaths by

suicide among former NFL players after 2010. Further, sensitivity analyses found that the HR in later years was similar when we split follow-up time after 2011 and weaker when split after 2009 (which added a “lower risk year” to the high-risk period if we assume increased risk began in 2011). These findings align with a prior study on suicide among former NFL players between 1920 and 2015, which found that a disproportionate number of suicides (42.3%) occurred after 2009.³⁰

Like our study, two prior investigations of suicide among NFL athletes used other elite athletes as comparators. One found an elevated, but not significant, HR of 1.59 (95% CI: 0.54–4.69) for NFL players compared with MLB players from 1979 to 2013, although that study only included players who played at least five seasons.⁴² The other compared contract NFL players with replacement players who participated during the 1987 NFL strike with follow-up from 1979 to 2013 and found that contract NFL players had a lower proportion of self-harm and interpersonal violence-related deaths,⁴³ although the specific numbers of self-harm or interpersonal violence deaths and HR were not indicated. Importantly, neither prior study isolated the post-2010 time period nor had as large a sample size as the current study.

It is important to note that our findings do not imply that ASF-related exposures have benign effects on brain health, as many acute and chronic adverse effects of head injuries have been well-documented.^{10,11,13,44} RHI in football players has been strongly tied to depression,^{10–13} and severe depression remains the strongest contributor to suicidality.^{45,46} Our data are consistent with some change around 2011, accounting for an increased rate of death certificate-identified suicides among NFL players relative to the MLB + NBA reference group, which could be explained by a number of possible reasons. First, the increase in NFL player suicide after 2010 could relate to the emerging widespread awareness of concussion and CTE in the NFL.²⁰ Such increased awareness could have led to a higher rate of suicide as captured by death certificates in different ways. For example, there could be an increased recording of suicide on death certificates by medical examiners since 2011. If that increase is from incorrectly attributed suicides, that would show an increase in the suicide rate. Such an increase could also have occurred, for example, if greater awareness of concussion effects and CTE led to reduced stigmatization of suicide and so greater recognition by families and medical examiners that a given death was in fact by suicide. This explanation would imply that former ASF players do indeed have a higher rate of suicide than former MLB and NBA athletes—possibly from RHI, but that difference was masked prior to 2011 by under-reporting among former ASF players because of stigma.

Other mechanisms may also have contributed to a higher recording of suicide among NFL players after 2011. A number of well-publicized NFL deaths by suicide starting in 2011 could have motivated additional suicides through copycat behavior, known as the Werther Effect.⁴⁷ Notably, the 2011 suicide and several subsequent ones were among NFL players who died of self-inflicted gunshot wounds to the chest with specific instructions to preserve their brains for CTE studies.²⁴ Second, it is possible that the higher rate of suicide could result from exposure to a colleague who died with CTE. It has been found that compensation and retirement decisions of ASF players are affected by a teammate dying with CTE.⁴⁸ It is therefore possible that players’ decisions are highly responsive to the health status of peers, and could contribute to suicidality.

In addition, diagnosed incurable neurodegenerative illness has generally been associated with depression and risk of suicide,⁴⁹ which may also apply to CTE. Thus, even if the underlying biological consequences of playing football remained the same, increased feelings of despair and demoralization associated with putative neurodegenerative disease (e.g., CTE) could have independently contributed to the increase in deaths by suicide found in this study. Alongside increased awareness of the relationship between RHI exposure and CTE starting around 2011, there was prominent scrutiny of institutional responses that minimized these associations.³¹ Publicity surrounding these efforts may have resulted in protest-related motivations to demonstrate the pathological effects of RHI in the setting of institutional inaction, especially relevant given the aforementioned efforts by some decedents to preserve their brains for study.

It is also possible that other factors contributed to our results. Equipment, rule-based, or policy changes implemented before 2011, as well as earlier participation in football beginning in the 1980s, could possibly have affected the later risk of suicide. However, such changes would have had to have occurred a while before 2011 since our population was followed for many years after playing, and given such an interval, such changes would likely lead to more gradual changes in suicide risk over time than what we observed. Investigations into ASF-specific factors that may have changed before or during 2011 are warranted. It is also important to note that a reduction in risk of suicide post-2010 among MLB and NBA players could also contribute to our findings. The slightly lower HR for post-2010 follow-up among MLB + NBA players suggests that some contribution from this could be occurring. However, this must be interpreted with caution since the distribution of follow-up times before and after 2010 differs and that can affect HR,⁵⁰ and there were very few cases of suicide after 2010 among MLB + NBA

making further exploration of HR in specific follow-up time windows unstable.

Regardless of the contributors to mental health symptoms that increase risk of death by suicide, clinicians should prioritize screening for and treating treatable conditions with symptoms that may result in suicidality. At present, CTE can only be identified on autopsy based on patterns of phosphorylated tau aggregation in neurons at the depths of cortical sulci,²¹ although efforts to identify CTE-related tau deposition patterns among living players are ongoing.⁵¹⁻⁵⁴ While an antemortem diagnosis of CTE is not yet possible, concern about having CTE has been documented in approximately one-third of former players,^{27,28} and was associated with increased thoughts of self-harm.²⁷ Among former professional football players, a common clinical phenotype has been associated with (1) CTE concerns²⁷; (2) meeting research criteria for traumatic encephalopathy syndrome⁵⁵; and (3) reporting being told they have CTE by a medical care provider.^{56,57} Specifically, players with CTE concerns or those who have been told they have CTE were more likely to report treatable conditions (sleep apnea, chronic pain, hypertension, low testosterone, etc.)^{27,57} that have been linked to incident psychiatric symptoms in populations without brain injury.⁵⁸⁻⁶⁰ In addition to proactively treating these medical issues, NFL players with these conditions and others who are concerned that they have CTE should be surveilled and treated for thoughts of self-harm using psychotherapy, pharmacotherapy, or other interventions that reduce suicidality. Finally, reporting in public media may also be used to positively counteract the Werther effect. Known as the Papageno effect, following death by suicide, coverage of positive coping in adverse circumstances that did not result in suicide has been found to prevent contagion effects.⁴⁷

There are limitations to note. As previously described, there may be some errors in death certificate reporting of suicides. There is little published research on how well death certificates capture suicide in the United States. One doctoral thesis has reported that of suicides captured by the U.S. National Violent Death Reporting Systems (USNVDRS), death certificates correctly identify 99.6%,⁶¹ but this doesn't speak to any suicides possibly missed by the USNVDRS. However, the contribution of changes to the rate of underreporting of suicides before and after 2010 cannot be determined in our data. Additionally, Latino, Asian, Asian-Pacific Islander, Native Alaskan, or American populations are underrepresented in professional football,³⁴ so the generalizability to these populations is not known.

Conclusions

This study suggests that ASF-specific factors emerging in or after 2011 are associated with increased suicide mortality

reporting in NFL players. These findings highlight the importance of proactive surveillance and treatment of NFL players for thoughts of self-harm, which could be further aided by disentangling the factors contributing to this increase. Living former players have been found to report multiple treatable conditions that can exacerbate psychiatric symptoms, such as sleep apnea, low testosterone, hypertension, and chronic pain,^{27,57,62,63} and should therefore be screened for such conditions. These findings should motivate players, family members, and clinicians to have explicit conversations with former professional athletes to reduce risk of self-harm in this population.

Transparency, Rigor, and Reproducibility Statement

This study was not preregistered online as data collection has been ongoing for several years, but the methods have been published online in prior publications. The analysis plan was not preregistered online but was conceived and executed by the primary authors and reviewed by two secondary authors. The primary authors certify that the analysis was prespecified. The sample includes every eligible participant because it relies on government records. Data collection and analyses were performed by investigators who were aware of relevant participant characteristics. All outcome measures used are in the public domain. Due to the high-profile nature of study participants, data are not available at this time. Analytic code can be made available upon reasonable request. R was used to complete the analyses. Missing data were handled as reported in the text.

Acknowledgments

The authors wish to recognize the meaningful and compassionate contributions offered over the course of this project by clinicians caring for former professional athletes.

Authors' Contributions

R.G. had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. N.K. contributed equally to this work. Concept and design: R.G., M.G.W., N.K., B.A., and R.Z. Acquisition, analysis, or interpretation of data: R.G., M.G.W., N.K., M.L., and E.N.F. Drafting of the article: R.G., N.K., B.A., W.G., R.Z., A.L.B., M.G.W., and M.L. Critical revision of the article for important intellectual content: All authors. Statistical analysis: N.K., B.A., R.G., M.G.W., and M.L. Obtained funding: R.Z., B.A., W.G., M.G.W., and R.G. Administrative, technical, or material support: E.N.F., R.G., and R.Z. Supervision: W.G., M.G.W., and R.Z.

Author Disclosure Statement

A.L.B. has received funding from the National Institute of Health/National Heart, Lung, and Blood Institute, the National Football League Players Association (NFLPA),

and the American Heart Association and receives compensation for his role as team cardiologist from the U.S. Olympic Committee/US Olympic Training Centers, US Soccer, US Rowing, the New England Patriots, the Boston Bruins, the New England Revolution, and Harvard University. R.Z. reported receiving royalties from Springer/Demos publishing for serving as coeditor of the text *Brain Injury Medicine*; serving on the scientific advisory board of Myomo Inc., and onecare.ai Inc.; and receiving grants from the NIH. M.G.W. reported receiving grants from the NFLPA and the NIH during the conduct of the study. D.H.D. serves as an expert witness in legal cases involving brain injury and concussion; evaluates patients in the Massachusetts General Hospital Brain and Body-TRUST Program, which is funded by the NFLPA; and serves as an advisor and options holder for StataDx. R.G. received grant funding from the NFLPA.

No other disclosures were reported.

Funding Information

This work was funded in part by a generous donation from the Sloan Family to Spaulding Rehabilitation Hospital's Schoen Research Institute and by support from the Heinz Foundation to Spaulding Rehabilitation Hospital's Schoen Research Institute. Funding for W.G. and Sports Reference data acquisition from the Distinguished John T. "Jack" Boorman '63 Chair in Business and Economics, Athanasius Kircher Senior Researcher Fellowship, and Francis J. Fallon Endowed Professorship. B.A. is supported by the Colgate University Research Council. Partial funding for Football Players Health Study contributions was provided by the NFL Players Association. The NFL Players Association did not contribute to the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the article; and decision to submit the article for publication. This work received support from Harvard Catalyst | The Harvard Clinical and Translational Science Center (National Center for Advancing Translational Sciences, National Institutes of Health Award UL1 TR002541) and financial contributions from Harvard University and its affiliated academic health-care centers. The content is solely the responsibility of the authors and does not necessarily represent the official views of Harvard Catalyst, Harvard University and its affiliated academic health care centers, or the National Institutes of Health.

Supplementary Material

Supplementary Data

References

1. Garnett MF, Curtin SC. Suicide mortality in the United States, 2001–2021. NCHS Data Brief 2023(464):1–8.
2. WISQARS C. Injuries and violence are leading causes of death. 2023. Available from: <https://wisqars.cdc.gov/lcd/>
3. Riera-Serra P, Navarra-Ventura G, Castro A, et al. Clinical predictors of suicidal ideation, suicide attempts and suicide death in depressive disorder: A systematic review and meta-analysis. *Eur Arch Psychiatry Clin Neurosci* 2024;274(7):1543–1563; doi: 10.1007/s00406-023-01716-5
4. Brown GK, Beck AT, Steer RA, et al. Risk factors for suicide in psychiatric outpatients: A 20-year prospective study. *J Consult Clin Psychol* 2000; 68(3):371–377.
5. Orsolini L, Latini R, Pompili M, et al. Understanding the complex of suicide in depression: From research to clinics. *Psychiatry Investig* 2020; 17(3):207–221; doi: 10.30773/pi.2019.0171
6. Hawton K, Casanas ICC, Haw C, et al. Risk factors for suicide in individuals with depression: A systematic review. *J Affect Disord* 2013;147(1–3): 17–28; doi: 10.1016/j.jad.2013.01.004
7. Teasdale TW, Engberg AW. Suicide after traumatic brain injury: A population study. *J Neurol Neurosurg Psychiatry* 2001;71(4):436–440; doi: 10.1136/jnnp.71.4.436
8. Madsen T, Erlangsen A, Orlovska S, et al. Association between traumatic brain injury and risk of suicide. *JAMA* 2018;320(6):580–588; doi: 10.1001/jama.2018.10211
9. Eagle SR, Brent D, Covassin T, et al. Exploration of race and ethnicity, sex, sport-related concussion, depression history, and suicide attempts in US youth. *JAMA Netw Open* 2022;5(7):e2219934; doi: 10.1001/jamanetworkopen.2022.19934
10. Roberts AL, Pascual-Leone A, Speizer FE, et al. Exposure to American Football and Neuropsychiatric Health in former national football league players: Findings from the football players health study. *Am J Sports Med* 2019;47(12):2871–2880; doi: 10.1177/0363546519868989
11. Guskiewicz KM, Marshall SW, Bailes J, et al. Recurrent concussion and risk of depression in retired professional football players. *Med Sci Sports Exerc* 2007;39(6):903–909; doi: 10.1249/mss.0b013e3180383da5
12. Strain J, Didehbani N, Cullum CM, et al. Depressive symptoms and white matter dysfunction in retired NFL players with concussion history. *American Academy of Neurology* 2013;81(1):25–32; doi: 10.1212/WNL.0b013e318299ccf8
13. Kerr ZY, Marshall SW, Harding HP, Jr, et al. Nine-year risk of depression diagnosis increases with increasing self-reported concussions in retired professional football players. *Am J Sports Med* 2012;40(10):2206–2212; doi: 0363546512456193[pii]
14. Baron SL, Hein MJ, Lehman E, et al. Body mass index, playing position, race, and the cardiovascular mortality of retired professional football players. *Am J Cardiol* 2012;109(6):889–896; doi: 10.1016/j.amjcard.2011.10.050
15. Lehman EJ, Hein MJ, Gersic CM. Suicide mortality among retired national football league players who played 5 or more seasons. *Am J Sports Med* 2016;44(10):2486–2491; doi: 10.1177/0363546516645093
16. Grashow RG, Roberts AL, Zafonte R, et al. Defining exposures in professional football: Professional American-style football players as an occupational cohort. *Orthop J Sports Med* 2019;7(2):2325967119829212; doi: 10.1177/2325967119829212
17. Arrighi HM, Hertz-Pannier I. The evolving concept of the healthy worker survivor effect. *Epidemiology* 1994;5(2):189–196; doi: 10.1097/00001648-199403000-00009
18. Buckley JP, Keil AP, McGrath LJ, et al. Evolving methods for inference in the presence of healthy worker survivor bias. *Epidemiology* 2015;26(2): 204–212; doi: 10.1097/EDE.0000000000000217
19. Iverson GL. Chronic traumatic encephalopathy and risk of suicide in former athletes. *Br J Sports Med* 2014;48(2):162–165; doi: 10.1136/bjsports-2013-092935
20. Burley C. Suicide as a clinical feature of chronic traumatic encephalopathy: What is the evidence? *Aggress Violent Behav* 2020;54:101417.
21. Bieniek KF, Cairns NJ, Crary JF, et al; TBI/CTE Research Group. The second NINDS/NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy. *J Neuropathol Exp Neurol* 2021;80(3):210–219; doi: 10.1093/jnen/nlab001
22. Omalu BI, Hamilton RL, Kamboh MI, et al. Chronic traumatic encephalopathy (CTE) in a National Football League Player: Case report and emerging medicolegal practice questions. *J Forensic Nurs* 2010;6(1): 40–46; doi: 10.1111/j.1939-3938.2009.01064.x
23. Omalu BI, Bailes J, Hammers JL, et al. Chronic traumatic encephalopathy, suicides and parasuicides in professional American athletes: The role of the forensic pathologist. *Am J Forensic Med Pathol* 2010;31(2): 130–132; doi: 10.1097/PAF.0b013e3181ca7f35
24. Schwarz A. *Duerson's Brain Trauma Diagnosed*. New York; 2011.
25. Iverson GL, Kissinger-Knox A, Huebschmann NA, et al. A narrative review of psychiatric features of traumatic encephalopathy syndrome as

- conceptualized in the 20th century. *Front Neurol* 2023;14:1214814; doi: 10.3389/fneur.2023.1214814
26. Eggleston B, Wenske C, Sweat C, et al. Trends of public interest in chronic traumatic encephalopathy (CTE) from 2004 to 2022. *J Osteopath Med* 2025;125(4):173–178; doi: 10.1515/jom-2024-0015
 27. Grashow R, Terry DP, Iverson GL, et al. Perceived chronic traumatic encephalopathy and suicidality in former professional football players. *JAMA Neurol* 2024;81(11):1130–1139; doi: 10.1001/jamaneurol.2024.3083
 28. Walton SR, Kerr ZY, Mannix R, et al. Subjective concerns regarding the effects of sport-related concussion on long-term brain health among former NFL players: An NFL-LONG Study. *Sports Med* 2022;52(5):1189–1203; doi: 10.1007/s40279-021-01589-5
 29. Kerr ZY, Roos KG, Djoko A, et al. Epidemiologic measures for quantifying the incidence of concussion in National Collegiate Athletic Association Sports. *J Athl Train* 2017;52(3):167–174; doi: 10.4085/1062-6050-51.6.05
 30. Webner D, Iverson GL. Suicide in professional American football players in the past 95 years. *Brain Inj* 2016;30(13–14):1718–1721; doi: 10.1080/02699052.2016.1202451
 31. Fainaru-Wada M, Fainaru S. League of denial: the NFL, concussions, and the battle for truth. *Crown Archetype*: New York; 2013.
 32. Llc SR. Pro-Sports-Reference.com - Pro Sports statistics and history. 2020. Available from: <https://www.pro-football-reference.com/>
 33. Hidden Game Sports L. Hidden game sports – Historical perspective, modern insight. 2020. Available from: <https://hiddengamesports.com/>
 34. Marquez-Velarde G, Grashow R, Glass C, et al. The paradox of integration: Racial composition of NFL positions from 1960 to 2020. *Sociology of Race and Ethnicity* 2023;9(4):451–469; doi: 10.1177/2326492321182597
 35. Karaye IM. Differential trends in US suicide rates, 1999–2020: Emerging racial and ethnic disparities. *Prev Med* 2022;159:107064; doi: 10.1016/j.ypmed.2022.107064
 36. Rogot E, Sorlie P, Johnson NJ. Probabilistic methods in matching census samples to the National Death Index. *J Chronic Dis* 1986;39(9):719–734; doi: 10.1016/0021-9681(86)90155-4
 37. Sperr E. PubMed by year. 2016. Available from: <http://esperr.github.io/pubmed-by-year/> [Last accessed: September 1, 2024].
 38. R Core Team. R: A language and environment for statistical computing. 2019. Available from: <https://www.R-project.org/>
 39. Pichler EM, Ewers S, Ajdacic-Gross V, et al. Athletes are not at greater risk for death by suicide: A review. *Scand J Med Sci Sports* 2023;33(5):569–585; doi: 10.1111/sms.14316
 40. Gill VS, Sullivan G, Stearns H, et al. Mental health in elite athletes: A systematic review of suicidal behaviour as compared to the general population. *Sports Med* 2024;54(6):1–18; doi: 10.1007/s40279-024-01998-2
 41. Iverson GL. Retired National Football League players are not at greater risk for suicide. *Arch Clin Neuropsychol* 2020;35(3):332–341; doi: 10.1093/arclin/acz023
 42. Nguyen VT, Zafonte RD, Chen JT, et al. Mortality among professional American-style football players and professional American baseball players. *JAMA Netw Open* 2019;2(5):e194223.
 43. Venkataramani AS, Gandhavadi M, Jena AB. Association between playing American Football in the National Football League and long-term mortality. *JAMA* 2018;319(8):800–806; doi: 10.1001/jama.2018.0140
 44. Izzy S, Chen PM, Tahir Z, et al. Association of traumatic brain injury with the risk of developing chronic cardiovascular, endocrine, neurological, and psychiatric disorders. *JAMA Netw Open* 2022;5(4):e229478.
 45. Nock MK, Borges G, Bromet EJ, et al. Cross-national prevalence and risk factors for suicidal ideation, plans and attempts. *Br J Psychiatry* 2008;192(2):98–105; doi: 10.1192/bjp.bp.107.040113
 46. Nordenstoft M, Mortensen PB, Pedersen CB. Absolute risk of suicide after first hospital contact in mental disorder. *Arch Gen Psychiatry* 2011;68(10):1058–1064; doi: 10.1001/archgenpsychiatry.2011.113
 47. Domaradzki J. The Werther effect, the Papageno effect or no effect? A literature review. *Int J Environ Res Public Health* 2021;18(5):2396; doi: 10.3390/ijerph18052396
 48. Martin JC. Peer Health Shocks and Labor Supply. Vanderbilt University: Nashville, TN; 2024.
 49. Alejos M, Vazquez-Bourgon J, Santurtun M, et al. Do patients diagnosed with a neurological disease present increased risk of suicide? *Neurologia (Engl Ed)* 2023;38(1):41–46; doi: 10.1016/j.nrleng.2020.03.005
 50. Hernan MA. The hazards of hazard ratios. *Epidemiology* 2010;21(1):13–15; doi: 10.1097/EDE.0b013e3181c1ea43
 51. Barrio JR, Small GW, Wong KP, et al. In vivo characterization of chronic traumatic encephalopathy using [F-18]FDDNP PET brain imaging. *Proceedings of the National Academy of Sciences of the United States of America* 2015;112(16):E2039–E2047; doi: 10.1073/pnas.1409952112
 52. Small GW, Kepe V, Siddarth P, et al. PET scanning of brain tau in retired national football league players: Preliminary findings. *Am J Geriatr Psychiatry* 2013;21(2):138–144; doi: 10.1016/j.jagp.2012.11.019
 53. Dhaynaut M, Grashow R, Normandin M, et al. Tau positron emission tomography and neurocognitive function among former professional American-style football players. *J Neurotrauma* 2023;40(15–16):1614–1624; doi: 10.1089/neu.2022.0454
 54. Omalu B, Small GW, Bailes J, et al. Postmortem autopsy-confirmation of antemortem [F-18]FDDNP-PET scans in a football player with chronic traumatic encephalopathy. *Neurosurgery* 2018;82(2):237–246; doi: 10.1093/neuro/nyx536
 55. Grashow R, Eagle SR, Terry DP, et al. Medical conditions in former professional American-style football players are associated with self-reported clinical features of traumatic encephalopathy syndrome. *Neurotrauma Rep* 2024;5(1):376–386; doi: 10.1089/neur.2024.0008
 56. Eagle SR, Grashow R, DiGregorio H, et al. Interaction of medical conditions and football exposures associated with premortem chronic traumatic encephalopathy diagnosis in former professional American football players. *Sports Med* 2024;54(3):743–752; doi: 10.1007/s40279-023-01942-w
 57. Grashow R, Weisskopf MG, Baggish A, et al. Premortem chronic traumatic encephalopathy diagnoses in professional football. *Ann Neurol* 2020;88(1):106–112; doi: 10.1002/ana.25747
 58. Joshi D, van Schoor NM, de Ronde W, et al. Low free testosterone levels are associated with prevalence and incidence of depressive symptoms in older men. *Clin Endocrinol (Oxf)* 2010;72(2):232–240; doi: 10.1111/j.1365-2265.2009.03641.x
 59. Chen YH, Keller JK, Kang JH, et al. Obstructive sleep apnea and the subsequent risk of depressive disorder: A population-based follow-up study. *J Clin Sleep Med* 2013;9(5):417–423; doi: 10.5664/jcsm.2652
 60. Armstrong NM, Meoni LA, Carlson MC, et al. Cardiovascular risk factors and risk of incident depression throughout adulthood among men: The Johns Hopkins precursors study. *J Affect Disord* 2017;214:60–66; doi: 10.1016/j.jad.2017.03.004
 61. Palmer MN. Accuracy of Death Certificate Data in Reporting Suicide in the United States. Walden University: Minneapolis, MN; 2020.
 62. Grashow R, Tan CO, Izzy S, et al. Association between concussion burden during Professional American-style football and post-career hypertension. *Circulation* 2023;147(14):1112–1114; doi: 10.1161/CIRCULATIONAHA.122.063767
 63. Grashow R, Weisskopf MG, Miller KK, et al. Association of Concussion symptoms with testosterone levels and erectile dysfunction in former professional US-Style Football Players. *JAMA Neurol* 2019;76(12):1428–1438; doi: 10.1001/jamaneurol.2019.2664